BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37419334)

  • 21. FOXN1 recombinant protein enhances T-cell regeneration after hematopoietic stem cell transplantation in mice.
    Song Y; Su M; Zhu J; Di W; Liu Y; Hu R; Rood D; Lai L
    Eur J Immunol; 2016 Jun; 46(6):1518-28. PubMed ID: 27125859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture.
    Müller SM; Terszowski G; Blum C; Haller C; Anquez V; Kuschert S; Carmeliet P; Augustin HG; Rodewald HR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10587-92. PubMed ID: 16027358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells.
    Zook EC; Krishack PA; Zhang S; Zeleznik-Le NJ; Firulli AB; Witte PL; Le PT
    Blood; 2011 Nov; 118(22):5723-31. PubMed ID: 21908422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maintenance of thymic epithelial phenotype requires extrinsic signals in mouse and zebrafish.
    Soza-Ried C; Bleul CC; Schorpp M; Boehm T
    J Immunol; 2008 Oct; 181(8):5272-7. PubMed ID: 18832682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium.
    Guo J; Rahman M; Cheng L; Zhang S; Tvinnereim A; Su DM
    J Mol Med (Berl); 2011 Mar; 89(3):263-77. PubMed ID: 21109991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice.
    Ruan L; Zhang Z; Mu L; Burnley P; Wang L; Coder B; Zhuge Q; Su DM
    Cell Death Dis; 2014 Oct; 5(10):e1457. PubMed ID: 25299782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FOXN1 in organ development and human diseases.
    Palamaro L; Romano R; Fusco A; Giardino G; Gallo V; Pignata C
    Int Rev Immunol; 2014 Mar; 33(2):83-93. PubMed ID: 24432845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-autonomous defects in thymic epithelial cells disrupt endothelial-perivascular cell interactions in the mouse thymus.
    Bryson JL; Griffith AV; Hughes B; Saito F; Takahama Y; Richie ER; Manley NR
    PLoS One; 2013; 8(6):e65196. PubMed ID: 23750244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution.
    Sun L; Guo J; Brown R; Amagai T; Zhao Y; Su DM
    Aging Cell; 2010 Jun; 9(3):347-57. PubMed ID: 20156205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human clinical phenotype associated with FOXN1 mutations.
    Pignata C; Fusco A; Amorosi S
    Adv Exp Med Biol; 2009; 665():195-206. PubMed ID: 20429426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Oxygen Submersion Fetal Thymus Organ Cultures Enable FOXN1-Dependent and -Independent Support of T Lymphopoiesis.
    Han J; Zúñiga-Pflücker JC
    Front Immunol; 2021; 12():652665. PubMed ID: 33859647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution.
    O'Neill KE; Bredenkamp N; Tischner C; Vaidya HJ; Stenhouse FH; Peddie CD; Nowell CS; Gaskell T; Blackburn CC
    PLoS One; 2016; 11(3):e0151666. PubMed ID: 26983083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression.
    Garfin PM; Min D; Bryson JL; Serwold T; Edris B; Blackburn CC; Richie ER; Weinberg KI; Manley NR; Sage J; Viatour P
    J Exp Med; 2013 Jun; 210(6):1087-97. PubMed ID: 23669396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation.
    Su DM; Navarre S; Oh WJ; Condie BG; Manley NR
    Nat Immunol; 2003 Nov; 4(11):1128-35. PubMed ID: 14528302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foxn1 overexpression promotes thymic epithelial progenitor cell proliferation and mTEC maintenance, but does not prevent thymic involution.
    Li J; Wachsmuth LP; Xiao S; Condie BG; Manley NR
    Development; 2023 Apr; 150(8):. PubMed ID: 36975725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FOXN1 (GFP/w) reporter hESCs enable identification of integrin-β4, HLA-DR, and EpCAM as markers of human PSC-derived FOXN1(+) thymic epithelial progenitors.
    Soh CL; Giudice A; Jenny RA; Elliott DA; Hatzistavrou T; Micallef SJ; Kianizad K; Seach N; Zúñiga-Pflücker JC; Chidgey AP; Trounson A; Nilsson SK; Haylock DN; Boyd RL; Elefanty AG; Stanley EG
    Stem Cell Reports; 2014 Jun; 2(6):925-37. PubMed ID: 24936476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus.
    Itoi M; Tsukamoto N; Amagai T
    Int Immunol; 2007 Feb; 19(2):127-32. PubMed ID: 17158094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells.
    Žuklys S; Handel A; Zhanybekova S; Govani F; Keller M; Maio S; Mayer CE; Teh HY; Hafen K; Gallone G; Barthlott T; Ponting CP; Holländer GA
    Nat Immunol; 2016 Oct; 17(10):1206-1215. PubMed ID: 27548434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts.
    Bredenkamp N; Ulyanchenko S; O'Neill KE; Manley NR; Vaidya HJ; Blackburn CC
    Nat Cell Biol; 2014 Sep; 16(9):902-8. PubMed ID: 25150981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FOXN1 Deficiency: from the Discovery to Novel Therapeutic Approaches.
    Gallo V; Cirillo E; Giardino G; Pignata C
    J Clin Immunol; 2017 Nov; 37(8):751-758. PubMed ID: 28932937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.