BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37419404)

  • 1. Past, Present, and Future of Tools for Dopamine Detection.
    Zheng Y; Li Y
    Neuroscience; 2023 Aug; 525():13-25. PubMed ID: 37419404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging.
    Labouesse MA; Cola RB; Patriarchi T
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33126757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice.
    Sun F; Zeng J; Jing M; Zhou J; Feng J; Owen SF; Luo Y; Li F; Wang H; Yamaguchi T; Yong Z; Gao Y; Peng W; Wang L; Zhang S; Du J; Lin D; Xu M; Kreitzer AC; Cui G; Li Y
    Cell; 2018 Jul; 174(2):481-496.e19. PubMed ID: 30007419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo.
    Zhuo Y; Luo B; Yi X; Dong H; Miao X; Wan J; Williams JT; Campbell MG; Cai R; Qian T; Li F; Weber SJ; Wang L; Li B; Wei Y; Li G; Wang H; Zheng Y; Zhao Y; Wolf ME; Zhu Y; Watabe-Uchida M; Li Y
    Nat Methods; 2024 Apr; 21(4):680-691. PubMed ID: 38036855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo.
    Sun F; Zhou J; Dai B; Qian T; Zeng J; Li X; Zhuo Y; Zhang Y; Wang Y; Qian C; Tan K; Feng J; Dong H; Lin D; Cui G; Li Y
    Nat Methods; 2020 Nov; 17(11):1156-1166. PubMed ID: 33087905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution.
    Kroning KE; Wang W
    Clin Transl Med; 2022 Dec; 12(12):e1124. PubMed ID: 36446954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators.
    Patriarchi T; Cho JR; Merten K; Marley A; Broussard GJ; Liang R; Williams J; Nimmerjahn A; von Zastrow M; Gradinaru V; Tian L
    Nat Protoc; 2019 Dec; 14(12):3471-3505. PubMed ID: 31732722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved dual-color GRAB sensors for monitoring dopaminergic activity
    Zhuo Y; Luo B; Yi X; Dong H; Wan J; Cai R; Williams JT; Qian T; Campbell MG; Miao X; Li B; Wei Y; Li G; Wang H; Zheng Y; Watabe-Uchida M; Li Y
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila.
    Xie T; Ho MCW; Liu Q; Horiuchi W; Lin CC; Task D; Luan H; White BH; Potter CJ; Wu MN
    Cell Rep; 2018 Apr; 23(2):652-665. PubMed ID: 29642019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bright Future? A Perspective on Class C GPCR Based Genetically Encoded Biosensors.
    Otanuly M; Kubitschke M; Masseck OA
    ACS Chem Neurosci; 2024 Mar; 15(5):889-897. PubMed ID: 38380648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression.
    Zhao Y; Wan J; Li Y
    J Neurochem; 2024 Mar; ():. PubMed ID: 38468468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal detection of dopamine by sniffer cells expressing genetically encoded fluorescent sensors.
    Klein Herenbrink C; Støier JF; Reith WD; Dagra A; Gregorek MAC; Cola RB; Patriarchi T; Li Y; Tian L; Gether U; Herborg F
    Commun Biol; 2022 Jun; 5(1):578. PubMed ID: 35689020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.
    Lu Q; Chen X; Liu D; Wu C; Liu M; Li H; Zhang Y; Yao S
    Talanta; 2018 May; 182():428-432. PubMed ID: 29501174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors.
    Leo D; Mus L; Espinoza S; Hoener MC; Sotnikova TD; Gainetdinov RR
    Neuropharmacology; 2014 Jun; 81():283-91. PubMed ID: 24565640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and future techniques for detecting oxytocin: Focusing on genetically-encoded GPCR sensors.
    Lee D; Kwon HB
    J Neurosci Methods; 2022 Jan; 366():109407. PubMed ID: 34763021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically encoded sensors for measuring histamine release both in vitro and in vivo.
    Dong H; Li M; Yan Y; Qian T; Lin Y; Ma X; Vischer HF; Liu C; Li G; Wang H; Leurs R; Li Y
    Neuron; 2023 May; 111(10):1564-1576.e6. PubMed ID: 36924772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bright and Colorful Future for G-Protein Coupled Receptor Sensors.
    Ravotto L; Duffet L; Zhou X; Weber B; Patriarchi T
    Front Cell Neurosci; 2020; 14():67. PubMed ID: 32265667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution.
    Elizarova S; Chouaib AA; Shaib A; Hill B; Mann F; Brose N; Kruss S; Daniel JA
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2202842119. PubMed ID: 35613050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midbrain Dopamine Controls Anxiety-like Behavior by Engaging Unique Interpeduncular Nucleus Microcircuitry.
    DeGroot SR; Zhao-Shea R; Chung L; Klenowski PM; Sun F; Molas S; Gardner PD; Li Y; Tapper AR
    Biol Psychiatry; 2020 Dec; 88(11):855-866. PubMed ID: 32800629
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.