These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37419404)

  • 21. Synthetic nanosensors for imaging neuromodulators.
    Del Bonis-O'Donnell JT; Mun J; Delevich K; Landry MP
    J Neurosci Methods; 2021 Nov; 363():109326. PubMed ID: 34418445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro.
    Nakamoto C; Goto Y; Tomizawa Y; Fukata Y; Fukata M; Harpsøe K; Gloriam DE; Aoki K; Takeuchi T
    Mol Brain; 2021 Dec; 14(1):173. PubMed ID: 34872607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons.
    Nair AG; Gutierrez-Arenas O; Eriksson O; Vincent P; Hellgren Kotaleski J
    J Neurosci; 2015 Oct; 35(41):14017-30. PubMed ID: 26468202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Probes for Neurobiological Sensing and Imaging.
    Kim EH; Chin G; Rong G; Poskanzer KE; Clark HA
    Acc Chem Res; 2018 May; 51(5):1023-1032. PubMed ID: 29652127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
    Dragicevic E; Poetschke C; Duda J; Schlaudraff F; Lammel S; Schiemann J; Fauler M; Hetzel A; Watanabe M; Lujan R; Malenka RC; Striessnig J; Liss B
    Brain; 2014 Aug; 137(Pt 8):2287-302. PubMed ID: 24934288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver nanoclusters and carbon dots based light-addressable sensors for multichannel detections of dopamine and glutathione and its applications in probing of parkinson's diseases.
    Ma S; Yang Q; Zhang W; Xiao G; Wang M; Cheng L; Zhou X; Zhao M; Ji J; Zhang J; Yue Z
    Talanta; 2020 Nov; 219():121290. PubMed ID: 32887032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topography of Reward and Aversion Encoding in the Mesolimbic Dopaminergic System.
    Yuan L; Dou YN; Sun YG
    J Neurosci; 2019 Aug; 39(33):6472-6481. PubMed ID: 31217328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microelectrode-Based Electrochemical Sensing Technology for in Vivo Detection of Dopamine: Recent Developments and Future Prospects.
    He C; Tao M; Zhang C; He Y; Xu W; Liu Y; Zhu W
    Crit Rev Anal Chem; 2022; 52(3):544-554. PubMed ID: 32852227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
    Seamans JK; Yang CR
    Prog Neurobiol; 2004 Sep; 74(1):1-58. PubMed ID: 15381316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine.
    Salamone JD; Correa M
    Behav Brain Res; 2002 Dec; 137(1-2):3-25. PubMed ID: 12445713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels.
    Kim H; Nam MH; Jeong S; Lee H; Oh SJ; Kim J; Choi N; Seong J
    Prog Neurobiol; 2022 Jun; 213():102266. PubMed ID: 35364139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling Fast-scan Cyclic Voltammetry Data from Electrically Stimulated Dopamine Neurotransmission Data Using QNsim1.0.
    Harun R; Grassi CM; Munoz MJ; Wagner AK
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28605373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed neural tissues with in situ optical dopamine sensors.
    Li J; Reimers A; Dang KM; Brunk MGK; Drewes J; Hirsch UM; Willems C; Schmelzer CEH; Groth T; Nia AS; Feng X; Adelung R; Sacher WD; Schütt F; Poon JKS
    Biosens Bioelectron; 2023 Feb; 222():114942. PubMed ID: 36493722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemogenetic Manipulations of Ventral Tegmental Area Dopamine Neurons Reveal Multifaceted Roles in Cocaine Abuse.
    Mahler SV; Brodnik ZD; Cox BM; Buchta WC; Bentzley BS; Quintanilla J; Cope ZA; Lin EC; Riedy MD; Scofield MD; Messinger J; Ruiz CM; Riegel AC; España RA; Aston-Jones G
    J Neurosci; 2019 Jan; 39(3):503-518. PubMed ID: 30446532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution.
    Castagnola E; Garg R; Rastogi SK; Cohen-Karni T; Cui XT
    Biosens Bioelectron; 2021 Nov; 191():113440. PubMed ID: 34171734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Specific Component of the Evoked Potential Mirrors Phasic Dopamine Neuron Activity during Conditioning.
    Pan WX; Dudman JT
    J Neurosci; 2015 Jul; 35(29):10451-9. PubMed ID: 26203140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the role of heteroreceptor complexes in the central nervous system.
    Fuxe K; Borroto-Escuela D; Fisone G; Agnati LF; Tanganelli S
    Curr Protein Pept Sci; 2014; 15(7):647. PubMed ID: 25256022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration.
    Cadet JL; Jayanthi S; McCoy MT; Beauvais G; Cai NS
    CNS Neurol Disord Drug Targets; 2010 Nov; 9(5):526-38. PubMed ID: 20632973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels.
    Michaeli A; Yaka R
    Neuroscience; 2010 Feb; 165(4):1159-69. PubMed ID: 19944748
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.