These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 3741983)

  • 21. Ligand binding and conformational motions in myoglobin.
    Ostermann A; Waschipky R; Parak FG; Nienhaus GU
    Nature; 2000 Mar; 404(6774):205-8. PubMed ID: 10724176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The protein glass transition as measured by dielectric spectroscopy and differential scanning calorimetry.
    Jansson H; Swenson J
    Biochim Biophys Acta; 2010 Jan; 1804(1):20-6. PubMed ID: 19595796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The protein-solvent glass transition.
    Doster W
    Biochim Biophys Acta; 2010 Jan; 1804(1):3-14. PubMed ID: 19577666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erasing conformational limitations in N,N'-1,4-butanediyl-bis(6-hydroxy-hexanamide) crystallization from the superheated state of water.
    Harings JA; Yao Y; Graf R; van Asselen O; Broos R; Rastogi S
    Langmuir; 2009 Jul; 25(13):7652-66. PubMed ID: 19374343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mössbauer spectroscopy on nonequilibrium states of myoglobin: a study of r-t relaxation.
    Prusakov VE; Steyer J; Parak FG
    Biophys J; 1995 Jun; 68(6):2524-30. PubMed ID: 7647255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyper-mobile water is induced around actin filaments.
    Kabir SR; Yokoyama K; Mihashi K; Kodama T; Suzuki M
    Biophys J; 2003 Nov; 85(5):3154-61. PubMed ID: 14581215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Formation and melting of ordered structures in denatured myoglobin with differing water content: differential scanning calorimetry method].
    Belopol'skaia TV; Tsereteli GI; Grunina NA
    Biofizika; 1997; 42(4):831-3. PubMed ID: 9410013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of myoglobin crowding on the dynamics of water: an infrared study.
    Le Caër S; Klein G; Ortiz D; Lima M; Devineau S; Pin S; Brubach JB; Roy P; Pommeret S; Leibl W; Righini R; Renault JP
    Phys Chem Chem Phys; 2014 Nov; 16(41):22841-52. PubMed ID: 25242637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands.
    Decatur SM; DePillis GD; Boxer SG
    Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calorimetric and relaxation properties of xylitol-water mixtures.
    Elamin K; Sjöström J; Jansson H; Swenson J
    J Chem Phys; 2012 Mar; 136(10):104508. PubMed ID: 22423849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin.
    Kleinert T; Doster W; Leyser H; Petry W; Schwarz V; Settles M
    Biochemistry; 1998 Jan; 37(2):717-33. PubMed ID: 9425096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glass transition of deoxymyoglobin probed by optical absorption spectroscopy.
    Kushida T; Ahn JS; Hirata K; Kurita A
    Biochem Biophys Res Commun; 1989 Apr; 160(2):948-53. PubMed ID: 2719707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calorimetric study of crystal growth of ice in hydrated methemoglobin and of redistribution of the water clusters formed on melting the ice.
    Sartor G; Mayer E
    Biophys J; 1994 Oct; 67(4):1724-32. PubMed ID: 7819504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elasticity of globular proteins. The relation between mechanics, thermodynamics and mobility.
    Morozov VN; Morozova TYa
    J Biomol Struct Dyn; 1993 Dec; 11(3):459-81. PubMed ID: 8129868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen bonding and kinetic/thermodynamic transitions of aqueous trehalose solutions at cryogenic temperatures.
    Malsam J; Aksan A
    J Phys Chem B; 2009 May; 113(19):6792-9. PubMed ID: 19366245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glass transition behaviors of low-density amorphous ice films with different thicknesses.
    He C; Zhang W; Li Y
    J Chem Phys; 2010 Nov; 133(20):204504. PubMed ID: 21133443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions.
    Fenimore PW; Frauenfelder H; McMahon BH; Young RD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14408-13. PubMed ID: 15448207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the grain boundary of ice crystals in a frozen gelatin solution on the dielectric properties at a subzero temperature.
    Ueno S; Shirakashi R; Kudoh K; Higuchi T; Do GS; Araki T; Sagara Y
    Biosci Biotechnol Biochem; 2009 Nov; 73(11):2478-82. PubMed ID: 19897916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.