These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37419890)

  • 1. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies.
    Couto A; Young FJ; Atzeni D; Marty S; Melo-Flórez L; Hebberecht L; Monllor M; Neal C; Cicconardi F; McMillan WO; Montgomery SH
    Nat Commun; 2023 Jul; 14(1):4024. PubMed ID: 37419890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies.
    Young FJ; Monllor M; McMillan WO; Montgomery SH
    Proc Biol Sci; 2023 Jul; 290(2003):20231155. PubMed ID: 37491961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modified method to analyse cell proliferation using EdU labelling in large insect brains.
    Anton AA; Farnworth MS; Hebberecht L; Harrison CJ; Montgomery SH
    PLoS One; 2023; 18(10):e0292009. PubMed ID: 37796816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced long-term memory and increased mushroom body plasticity in
    Young FJ; Alcalde Anton A; Melo-Flórez L; Couto A; Foley J; Monllor M; McMillan WO; Montgomery SH
    iScience; 2024 Feb; 27(2):108949. PubMed ID: 38357666
    [No Abstract]   [Full Text] [Related]  

  • 5. Heliconiini butterflies can learn time-dependent reward associations.
    Toure MW; Young FJ; McMillan WO; Montgomery SH
    Biol Lett; 2020 Sep; 16(9):20200424. PubMed ID: 32961092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity and genetic effects contribute to different axes of neural divergence in a community of mimetic Heliconius butterflies.
    Hebberecht L; Wainwright JB; Thompson C; Kershenbaum S; McMillan WO; Montgomery SH
    J Evol Biol; 2023 Aug; 36(8):1116-1132. PubMed ID: 37341138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term spatial memory across large spatial scales in Heliconius butterflies.
    Moura PA; Young FJ; Monllor M; Cardoso MZ; Montgomery SH
    Curr Biol; 2023 Aug; 33(15):R797-R798. PubMed ID: 37552941
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hammer TJ; Dickerson JC; McMillan WO; Fierer N
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33008816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects.
    Farris SM
    Brain Behav Evol; 2013; 82(1):9-18. PubMed ID: 23979452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using motion-detection cameras to monitor foraging behaviour of individual butterflies.
    Dalbosco Dell'Aglio D; McMillan OW; Montgomery S
    Ecol Evol; 2024 Jul; 14(7):e70032. PubMed ID: 39041014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity.
    Montgomery SH; Merrill RM; Ott SR
    J Comp Neurol; 2016 Jun; 524(9):1747-69. PubMed ID: 26918905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information.
    Montgomery SH; Ott SR
    J Comp Neurol; 2015 Apr; 523(6):869-91. PubMed ID: 25400217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies.
    Cicconardi F; Milanetti E; Pinheiro de Castro EC; Mazo-Vargas A; Van Belleghem SM; Ruggieri AA; Rastas P; Hanly J; Evans E; Jiggins CD; Owen McMillan W; Papa R; Di Marino D; Martin A; Montgomery SH
    Nat Commun; 2023 Sep; 14(1):5620. PubMed ID: 37699868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of larval gregariousness is associated with host plant specialisation, but not host morphology, in Heliconiini butterflies.
    McLellan CF; Montgomery SH
    Ecol Evol; 2024 Feb; 14(2):e11002. PubMed ID: 38343573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain size: a global or induced cost of learning?
    Snell-Rood EC; Papaj DR; Gronenberg W
    Brain Behav Evol; 2009; 73(2):111-28. PubMed ID: 19390176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollen feeding in
    Young FJ; Montgomery SH
    Proc Biol Sci; 2020 Nov; 287(1938):20201304. PubMed ID: 33171092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult neurogenesis does not explain the extensive post-eclosion growth of
    Alcalde Anton A; Young FJ; Melo-Flórez L; Couto A; Cross S; McMillan WO; Montgomery SH
    R Soc Open Sci; 2023 Oct; 10(10):230755. PubMed ID: 37885989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies.
    Sculfort O; de Castro ECP; Kozak KM; Bak S; Elias M; Nay B; Llaurens V
    Ecol Evol; 2020 Mar; 10(5):2677-2694. PubMed ID: 32185010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies.
    Montgomery SH; Merrill RM
    J Evol Biol; 2017 Mar; 30(3):571-582. PubMed ID: 27981714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No evidence of social learning in a socially roosting butterfly in an associative learning task.
    Moura PA; Cardoso MZ; Montgomery SH
    Biol Lett; 2023 May; 19(5):20220490. PubMed ID: 37194257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.