BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37420087)

  • 1. Opto-juxtacellular interrogation of neural circuits in freely moving mice.
    Ding L; Balsamo G; Diamantaki M; Preston-Ferrer P; Burgalossi A
    Nat Protoc; 2023 Aug; 18(8):2415-2440. PubMed ID: 37420087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice.
    Ding L; Balsamo G; Chen H; Blanco-Hernandez E; Zouridis IS; Naumann R; Preston-Ferrer P; Burgalossi A
    Elife; 2022 Jan; 11():. PubMed ID: 35080491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Juxtacellular recording and morphological identification of single neurons in freely moving rats.
    Tang Q; Brecht M; Burgalossi A
    Nat Protoc; 2014 Oct; 9(10):2369-81. PubMed ID: 25211514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice.
    Ding L; Chen H; Diamantaki M; Coletta S; Preston-Ferrer P; Burgalossi A
    J Neurosci; 2020 Jul; 40(30):5797-5806. PubMed ID: 32554511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operant conditioning paradigm for juxtacellular recordings in functionally identified cortical neurons during motor execution in head-fixed rats.
    Santana-Chávez G; Rodriguez-Moreno P; López-Hidalgo M; Olivares-Moreno R; Moreno-López Y; Rojas-Piloni G
    J Neurosci Methods; 2020 Jan; 329():108454. PubMed ID: 31669337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction-based stabilization of juxtacellular recordings in freely moving rats.
    Herfst L; Burgalossi A; Haskic K; Tukker JJ; Schmidt M; Brecht M
    J Neurophysiol; 2012 Jul; 108(2):697-707. PubMed ID: 22514297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loose-patch-juxtacellular recording in vivo--a method for functional characterization and labeling of neurons in macaque V1.
    Joshi S; Hawken MJ
    J Neurosci Methods; 2006 Sep; 156(1-2):37-49. PubMed ID: 16540174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Architecture of the Rat Parasubiculum.
    Tang Q; Burgalossi A; Ebbesen CL; Sanguinetti-Scheck JI; Schmidt H; Tukker JJ; Naumann R; Ray S; Preston-Ferrer P; Schmitz D; Brecht M
    J Neurosci; 2016 Feb; 36(7):2289-301. PubMed ID: 26888938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrograde fluorescent labeling allows for targeted extracellular single-unit recording from identified neurons in vivo.
    Lyons-Warren AM; Kohashi T; Mennerick S; Carlson BA
    J Vis Exp; 2013 Jun; (76):. PubMed ID: 23928906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex.
    Tang Q; Ebbesen CL; Sanguinetti-Scheck JI; Preston-Ferrer P; Gundlfinger A; Winterer J; Beed P; Ray S; Naumann R; Schmitz D; Brecht M; Burgalossi A
    J Neurosci; 2015 Sep; 35(36):12346-54. PubMed ID: 26354904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell juxtacellular transfection and recording technique.
    Daniel J; Polder HR; Lessmann V; Brigadski T
    Pflugers Arch; 2013 Nov; 465(11):1637-49. PubMed ID: 23748581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca
    Anner P; Passecker J; Klausberger T; Dorffner G
    J Neurosci Methods; 2020 Jul; 341():108765. PubMed ID: 32407804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for single-cell recording and labeling in vivo.
    Cid E; de la Prida LM
    J Neurosci Methods; 2019 Sep; 325():108354. PubMed ID: 31302156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic mice expressing a fluorescent in vivo label in a distinct subpopulation of neocortical layer 5 pyramidal cells.
    Akemann W; Zhong YM; Ichinohe N; Rockland KS; Knöpfel T
    J Comp Neurol; 2004 Nov; 480(1):72-88. PubMed ID: 15515023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice.
    Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053
    [No Abstract]   [Full Text] [Related]  

  • 17. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior.
    Lee AK; Brecht M
    Trends Neurosci; 2018 Jun; 41(6):385-403. PubMed ID: 29685404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-cell Patch-clamp Recordings in Brain Slices.
    Segev A; Garcia-Oscos F; Kourrich S
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Juxtacellular labeling and chemical phenotyping of extracellularly recorded neurons in vivo.
    Toney GM; Daws LC
    Methods Mol Biol; 2006; 337():127-37. PubMed ID: 16929944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.