BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37420267)

  • 1. T Cell-intrinsic Immunomodulatory Effects of TAK-981 (Subasumstat), a SUMO-activating Enzyme Inhibitor, in Chronic Lymphocytic Leukemia.
    Lam V; Roleder C; Liu T; Bruss N; Best S; Wang X; Phillips T; Shouse G; Berger AJ; Alinari L; Wang L; Siddiqi T; Pennock ND; Danilov AV
    Mol Cancer Ther; 2023 Sep; 22(9):1040-1051. PubMed ID: 37420267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of TAK-981, a First-in-Class Inhibitor of SUMO-Activating Enzyme for the Treatment of Cancer.
    Langston SP; Grossman S; England D; Afroze R; Bence N; Bowman D; Bump N; Chau R; Chuang BC; Claiborne C; Cohen L; Connolly K; Duffey M; Durvasula N; Freeze S; Gallery M; Galvin K; Gaulin J; Gershman R; Greenspan P; Grieves J; Guo J; Gulavita N; Hailu S; He X; Hoar K; Hu Y; Hu Z; Ito M; Kim MS; Lane SW; Lok D; Lublinsky A; Mallender W; McIntyre C; Minissale J; Mizutani H; Mizutani M; Molchinova N; Ono K; Patil A; Qian M; Riceberg J; Shindi V; Sintchak MD; Song K; Soucy T; Wang Y; Xu H; Yang X; Zawadzka A; Zhang J; Pulukuri SM
    J Med Chem; 2021 Mar; 64(5):2501-2520. PubMed ID: 33631934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model.
    Kumar S; Schoonderwoerd MJA; Kroonen JS; de Graaf IJ; Sluijter M; Ruano D; González-Prieto R; Verlaan-de Vries M; Rip J; Arens R; de Miranda NFCC; Hawinkels LJAC; van Hall T; Vertegaal ACO
    Gut; 2022 Nov; 71(11):2266-2283. PubMed ID: 35074907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation.
    Nakamura A; Grossman S; Song K; Xega K; Zhang Y; Cvet D; Berger A; Shapiro G; Huszar D
    Blood; 2022 May; 139(18):2770-2781. PubMed ID: 35226739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells.
    Best S; Lam V; Liu T; Bruss N; Kittai A; Danilova OV; Murray S; Berger A; Pennock ND; Lind EF; Danilov AV
    Leukemia; 2021 Jan; 35(1):156-168. PubMed ID: 32203139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUMOylation inhibitor TAK-981 (subasumstat) synergizes with 5-azacytidine in preclinical models of acute myeloid leukemia.
    Gabellier L; De Toledo M; Chakraborty M; Akl D; Hallal R; Aqrouq M; Buonocore G; Recasens-Zorzo C; Cartron G; Delort A; Piechaczyk M; Tempé D; Bossis G
    Haematologica; 2024 Jan; 109(1):98-114. PubMed ID: 37608777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMOylation indirectly suppresses activity of the HIF-1α pathway in intestinal epithelial cells.
    Malkov MI; Flood D; Taylor CT
    J Biol Chem; 2023 Nov; 299(11):105280. PubMed ID: 37742924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models.
    Lightcap ES; Yu P; Grossman S; Song K; Khattar M; Xega K; He X; Gavin JM; Imaichi H; Garnsey JJ; Koenig E; Zhang H; Lu Z; Shah P; Fu Y; Milhollen MA; Hatton BA; Riceberg J; Shinde V; Li C; Minissale J; Yang X; England D; Klinghoffer RA; Langston S; Galvin K; Shapiro G; Pulukuri SM; Fuchs SY; Huszar D
    Sci Transl Med; 2021 Sep; 13(611):eaba7791. PubMed ID: 34524860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor.
    He X; Riceberg J; Soucy T; Koenig E; Minissale J; Gallery M; Bernard H; Yang X; Liao H; Rabino C; Shah P; Xega K; Yan ZH; Sintchak M; Bradley J; Xu H; Duffey M; England D; Mizutani H; Hu Z; Guo J; Chau R; Dick LR; Brownell JE; Newcomb J; Langston S; Lightcap ES; Bence N; Pulukuri SM
    Nat Chem Biol; 2017 Nov; 13(11):1164-1171. PubMed ID: 28892090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMOylation inhibition overcomes proteasome inhibitor resistance in multiple myeloma.
    Heynen GJJE; Baumgartner F; Heider M; Patra U; Holz M; Braune J; Kaiser M; Schäffer I; Bamopoulos SA; Ramberger E; Murgai A; Ng YLD; Demel UM; Laue D; Liebig S; Krüger J; Janz M; Nogai A; Schick M; Mertins P; Müller S; Bassermann F; Krönke J; Keller U; Wirth M
    Blood Adv; 2023 Feb; 7(4):469-481. PubMed ID: 35917568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells.
    Huang CH; Yang TT; Lin KI
    J Biomed Sci; 2024 Jan; 31(1):16. PubMed ID: 38280996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response.
    Conn KL; Wasson P; McFarlane S; Tong L; Brown JR; Grant KG; Domingues P; Boutell C
    J Virol; 2016 May; 90(9):4807-4826. PubMed ID: 26937035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications.
    Zhao B; Zhang Z; Chen X; Shen Y; Qin Y; Yang X; Xing Z; Zhang S; Long X; Zhang Y; An S; Wu H; Qi Y
    J Cell Physiol; 2021 May; 236(5):3466-3480. PubMed ID: 33151565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUMO-mimicking peptides inhibiting protein SUMOylation.
    Zhao B; Villhauer EB; Bhuripanyo K; Kiyokawa H; Schindelin H; Yin J
    Chembiochem; 2014 Dec; 15(18):2662-6. PubMed ID: 25412743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMOylation regulates the number and size of promyelocytic leukemia-nuclear bodies (PML-NBs) and arsenic perturbs SUMO dynamics on PML by insolubilizing PML in THP-1 cells.
    Hirano S; Udagawa O
    Arch Toxicol; 2022 Feb; 96(2):545-558. PubMed ID: 35001170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A
    J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Potential of Targeting the SUMO Pathway in Cancer.
    Kukkula A; Ojala VK; Mendez LM; Sistonen L; Elenius K; Sundvall M
    Cancers (Basel); 2021 Aug; 13(17):. PubMed ID: 34503213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ND10 Component Promyelocytic Leukemia Protein Acts as an E3 Ligase for SUMOylation of the Major Immediate Early Protein IE1 of Human Cytomegalovirus.
    Reuter N; Schilling EM; Scherer M; Müller R; Stamminger T
    J Virol; 2017 May; 91(10):. PubMed ID: 28250117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The post-translational modification, SUMOylation, and cancer (Review).
    Han ZJ; Feng YH; Gu BH; Li YM; Chen H
    Int J Oncol; 2018 Apr; 52(4):1081-1094. PubMed ID: 29484374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.