These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37420447)
1. Multiple Reflections for Classical Particles Moving under the Influence of a Time-Dependent Potential Well. Graciano FH; da Costa DR; Leonel ED; de Oliveira JA Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420447 [TBL] [Abstract][Full Text] [Related]
2. Scaling and self-similarity for the dynamics of a particle confined to an asymmetric time-dependent potential well. da Costa DR; Méndez-Bermúdez JA; Leonel ED Phys Rev E; 2019 Jan; 99(1-1):012202. PubMed ID: 30780348 [TBL] [Abstract][Full Text] [Related]
3. Escape of particles in a time-dependent potential well. da Costa DR; Dettmann CP; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066211. PubMed ID: 21797465 [TBL] [Abstract][Full Text] [Related]
4. Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings. de Oliveira JA; Dettmann CP; da Costa DR; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062904. PubMed ID: 23848745 [TBL] [Abstract][Full Text] [Related]
5. Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Livorati AL; Kroetz T; Dettmann CP; Caldas IL; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036203. PubMed ID: 23030993 [TBL] [Abstract][Full Text] [Related]
6. Influence of phase-space localization on the energy diffusion in a quantum chaotic billiard. Wisniacki DA; Vergini E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6579-84. PubMed ID: 11969645 [TBL] [Abstract][Full Text] [Related]
7. Chaotic properties of a time-modulated barrier. Leonel ED; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016214. PubMed ID: 15324159 [TBL] [Abstract][Full Text] [Related]
8. Orbits of charged particles trapped in a dipole magnetic field. Liu R; Liu S; Zhu F; Chen Q; He Y; Cai C Chaos; 2022 Apr; 32(4):043104. PubMed ID: 35489861 [TBL] [Abstract][Full Text] [Related]
9. Scaling investigation for the dynamics of charged particles in an electric field accelerator. Gouve A Ladeira D; Leonel ED Chaos; 2012 Dec; 22(4):043148. PubMed ID: 23278083 [TBL] [Abstract][Full Text] [Related]
10. Elliptic Flowers: New Types of Dynamics to Study Classical and Quantum Chaos. Attarchi H; Bunimovich LA Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141109 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431 [TBL] [Abstract][Full Text] [Related]
13. 1/f noise in a thin stochastic layer described by the discrete nonlinear Schrödinger equation. Pando L CL; Doedel EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016213. PubMed ID: 17358241 [TBL] [Abstract][Full Text] [Related]
14. Chaotic advection and the emergence of tori in the Küppers-Lortz state. Mullowney P; Julien K; Meiss JD Chaos; 2008 Sep; 18(3):033104. PubMed ID: 19045442 [TBL] [Abstract][Full Text] [Related]
15. Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow. Smith LD; Rudman M; Lester DR; Metcalfe G Chaos; 2016 May; 26(5):053106. PubMed ID: 27249946 [TBL] [Abstract][Full Text] [Related]
16. Phase space structure and chaotic scattering in near-integrable systems. Koch BP; Bruhn B Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051 [TBL] [Abstract][Full Text] [Related]
17. Leaking billiards. Nagler J; Krieger M; Linke M; Schönke J; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975 [TBL] [Abstract][Full Text] [Related]
18. Chaotic advection in a recirculating flow: Effect of a fluid-flexible-solid interaction. Prasad V; Kulkarni SS; Sharma A Chaos; 2022 Apr; 32(4):043122. PubMed ID: 35489862 [TBL] [Abstract][Full Text] [Related]
19. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator. Botari T; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012904. PubMed ID: 23410401 [TBL] [Abstract][Full Text] [Related]
20. Using periodic orbits to compute chaotic transport rates between resonance zones. Sattari S; Mitchell KA Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]