These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37420544)

  • 1. Evaluation of Roadside LiDAR-Based and Vision-Based Multi-Model All-Traffic Trajectory Data.
    Guan F; Xu H; Tian Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method of vehicle-pedestrian near-crash identification with roadside LiDAR data.
    Wu J; Xu H; Zheng Y; Tian Z
    Accid Anal Prev; 2018 Dec; 121():238-249. PubMed ID: 30265910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating LiDAR Sensor Data into Microsimulation Model Calibration for Proactive Safety Analysis.
    Igene M; Luo Q; Jimee K; Soltanirad M; Bataineh T; Liu H
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Object Detection Based on Roadside LiDAR for Cooperative Driving Automation: A Review.
    Sun P; Sun C; Wang R; Zhao X
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved vehicle-pedestrian near-crash identification method with a roadside LiDAR sensor.
    Wu J; Xu H; Zhang Y; Sun R
    J Safety Res; 2020 Jun; 73():211-224. PubMed ID: 32563396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exploratory study of pedestrian crossing speeds at midblock crossing in India using LiDAR.
    Vasudevan V; Tiwari A; Chakroborty P
    Traffic Inj Prev; 2022; 23(1):61-66. PubMed ID: 35020500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on an Adaptive Method for the Angle Calibration of Roadside LiDAR Point Clouds.
    Wen X; Hu J; Chen H; Huang S; Hu H; Zhang H
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian extreme value theory modelling framework to assess corridor-wide pedestrian safety using autonomous vehicle sensor data.
    Singh S; Ali Y; Haque MM
    Accid Anal Prev; 2024 Feb; 195():107416. PubMed ID: 38056025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crash frequency prediction based on extreme value theory using roadside lidar-based vehicle trajectory data.
    Bhattarai N; Zhang Y; Liu H; Xu H
    Accid Anal Prev; 2023 Dec; 193():107306. PubMed ID: 37769480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing Determinants of Near-Road Ambient Air Quality for an Urban Intersection and a Freeway Site.
    Frey HC; Grieshop AP; Khlystov A; Bang JJ; Rouphail N; Guinness J; Rodriguez D; Fuentes M; Saha P; Brantley H; Snyder M; Tanvir S; Ko K; Noussi T; Delavarrafiee M; Singh S
    Res Rep Health Eff Inst; 2022 Sep; 2022(207):1-73. PubMed ID: 36314577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel skateboarder-related near-crash identification method with roadside LiDAR data.
    Wu J; Zhang Y; Xu H
    Accid Anal Prev; 2020 Mar; 137():105438. PubMed ID: 32004863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vehicle Detection under Adverse Weather from Roadside LiDAR Data.
    Wu J; Xu H; Tian Y; Pi R; Yue R
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.
    Navarro PJ; Fernández C; Borraz R; Alonso D
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28025565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction.
    Sighencea BI; Stanciu RI; Căleanu CD
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Preliminary Study of Deep Learning Sensor Fusion for Pedestrian Detection.
    Plascencia AC; García-Gómez P; Perez EB; DeMas-Giménez G; Casas JR; Royo S
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Autonomous Vehicle Perception through Evaluating LiDAR Capabilities and Handheld Retroreflectivity Assessments.
    Aldoski ZN; Koren C
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling pedestrian behavior in pedestrian-vehicle near misses: A continuous Gaussian Process Inverse Reinforcement Learning (GP-IRL) approach.
    Nasernejad P; Sayed T; Alsaleh R
    Accid Anal Prev; 2021 Oct; 161():106355. PubMed ID: 34461394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor Fusion-Based Vehicle Detection and Tracking Using a Single Camera and Radar at a Traffic Intersection.
    Li S; Yoon HS
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images.
    Brkić I; Miler M; Ševrović M; Medak D
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.