These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37420608)

  • 1. Optimization Design of Large-Aperture Primary Mirror for a Space Remote Camera.
    Liu X; Gu K; Li M; Cheng Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible support structure design for optical mirror.
    Xu N; Zhang F; Jiang A
    Heliyon; 2023 Oct; 9(10):e20469. PubMed ID: 37810848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Application of a Topology Optimization Algorithm Based on the Kriging Surrogate Model in the Mirror Design and Optimization of an Aerial Camera.
    Zhao Y; Li L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Optimization for Mounting Primary Mirror with Reduced Sensitivity to Temperature Change in an Aerial Optoelectronic Sensor.
    Zhang M; Lu Q; Tian H; Wang D; Chen C; Wang X
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization design of an ultralight large-aperture space mirror.
    Wang H; Guo J; Shao M; Sun J; Tian F; Yang X
    Appl Opt; 2021 Dec; 60(35):10878-10884. PubMed ID: 35200862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.
    Liu S; Hu R; Li Q; Zhou P; Dong Z; Kang R
    Appl Opt; 2014 Dec; 53(35):8318-25. PubMed ID: 25608076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and optimization for main support structure of a large-area off-axis three-mirror space camera.
    Wei L; Zhang L; Gong X; Ma DM
    Appl Opt; 2017 Feb; 56(4):1094-1100. PubMed ID: 28158118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design analysis and test verification of a rigid-flexible, dual-mode coupling support structure for space-based rectangular curved prisms.
    Jia XY; Wang FC; Li LB; Zhang ZH; Liu J; Hu BL
    Appl Opt; 2021 Sep; 60(25):7563-7573. PubMed ID: 34613222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and optimization of the tripod flexure for a 2m lightweight mirror for space application.
    Jiang P; Xue C; Wang K; Wang X; Zhou P
    Appl Opt; 2023 Jan; 62(1):217-226. PubMed ID: 36606868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope.
    Li Z; Chen X; Wang S; Jin G
    Rev Sci Instrum; 2017 Dec; 88(12):125107. PubMed ID: 29289167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomechanical integrated optimization of a lightweight mirror for space cameras.
    Shao M; Zhang L; Jia X
    Appl Opt; 2021 Jan; 60(3):539-546. PubMed ID: 33690426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.
    Hu R; Liu S; Li Q
    Appl Opt; 2017 May; 56(15):4551-4560. PubMed ID: 29047887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopes.
    Dong Z; Jiang A; Dai Y; Xue J
    Appl Opt; 2018 Nov; 57(31):9307-9315. PubMed ID: 30461978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and optimization of integrated flexure mounts for unloading lateral gravity of a lightweight mirror for space application.
    Zhang L; Wang T; Zhang F; Zhao H; Zhao Y; Zheng X
    Appl Opt; 2021 Jan; 60(2):417-426. PubMed ID: 33448967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an adjustable bipod flexure for a large-aperture mirror of a space camera.
    Liu B; Wang W; Qu YJ; Li XP; Wang X; Zhao H
    Appl Opt; 2018 May; 57(15):4048-4055. PubMed ID: 29791378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and strategies in high-accuracy manufacturing of the world's largest SiC aspheric mirror.
    Zhang X; Hu H; Wang X; Luo X; Zhang G; Zhao W; Wang X; Liu Z; Xiong L; Qi E; Cui C; Wang Y; Li Y; Wang X; Li L; Bai Y; Cheng Q; Zhang Z; Li R; Tang W; Zeng X; Deng W; Zhang F
    Light Sci Appl; 2022 Oct; 11(1):310. PubMed ID: 36284086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the degradation of lightweight mirror surface accuracy.
    Zhou P; Wang K; Yan C; Zhang X
    Appl Opt; 2018 Sep; 57(27):7758-7763. PubMed ID: 30462038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of space active optics for a whiffletree supported mirror.
    Zhou P; Zhang D; Liu G; Yan C
    Appl Opt; 2019 Jul; 58(21):5740-5747. PubMed ID: 31503873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of lightweight additively manufactured mirrors for aviation.
    Tan S; Li Q; Xu Y; Shen H; Cheng Y; Jia P; Xu Y
    Appl Opt; 2022 Mar; 61(9):2198-2206. PubMed ID: 35333234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Fabrication of an Additively Manufactured Aluminum Mirror with Compound Surfaces.
    Zhang J; Wang C; Qu H; Guan H; Wang H; Zhang X; Xie X; Wang H; Zhang K; Li L
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.