BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37420624)

  • 1. A Novel Fusion Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on Improved Genetic Algorithm BP and Adaptive Extended Kalman Filter.
    Cao L; Shao C; Zhang Z; Cao S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State of Charge Estimation of Lithium-Ion Batteries Based on an Adaptive Iterative Extended Kalman Filter for AUVs.
    Fu Y; Zhai B; Shi Z; Liang J; Peng Z
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation-driven prediction model for state of charge estimation of electric vehicle lithium battery.
    Zhang J; Song C; Xiang J
    Heliyon; 2024 May; 10(10):e30988. PubMed ID: 38770289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State of charge estimation of ultracapacitor based on forgetting factor recursive least square and extended Kalman filter algorithm at full temperature range.
    Ren J; Xu Y; Zhang H; Yang F; Yang Y; Wang X; Jin P; Huang D
    Heliyon; 2022 Nov; 8(11):e11146. PubMed ID: 36353179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Battery SOC Estimation Method Based on AFFRLS-EKF.
    Li M; Zhang Y; Hu Z; Zhang Y; Zhang J
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries.
    Lin Q; Li X; Tu B; Cao J; Zhang M; Xiang J
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter.
    Yang S; Zhou S; Hua Y; Zhou X; Liu X; Pan Y; Ling H; Wu B
    Sci Rep; 2021 Mar; 11(1):5805. PubMed ID: 33707575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving accuracy in state of health estimation for lithium batteries using gradient-based optimization: Case study in electric vehicle applications.
    El Marghichi M; Dangoury S; Zahrou Y; Loulijat A; Chojaa H; Banakhr FA; Mosaad MI
    PLoS One; 2023; 18(11):e0293753. PubMed ID: 37917753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Various Offline and Online ECM Parameter Identification Methods of Lithium-Ion Batteries in Underwater Vehicles.
    Chen P; Lu C; Mao Z; Li B; Wang C; Tian W; Li M; Xu Y
    ACS Omega; 2022 Aug; 7(34):30504-30518. PubMed ID: 36061704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jitter solution in parameter identification based on cross-time scale fusion algorithm of lithium-ion batteries.
    Su X; Ge Y; Qiao X
    Heliyon; 2024 Apr; 10(8):e29402. PubMed ID: 38655324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine.
    Chen K; Zhou S; Liu K; Gao G; Wu G
    J Chem Phys; 2023 Mar; 158(10):104110. PubMed ID: 36922144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing state estimation for lithium-ion batteries with hysteresis through systematic extended Kalman filter tuning.
    Knox J; Blyth M; Hales A
    Sci Rep; 2024 May; 14(1):12472. PubMed ID: 38816427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.
    Wang YC; Shao NC; Chen GW; Hsu WS; Wu SC
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de MacĂȘdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State of charge estimation of vanadium redox battery based on improved extended Kalman filter.
    Qiu Y; Li X; Chen W; Duan ZM; Yu L
    ISA Trans; 2019 Nov; 94():326-337. PubMed ID: 31056216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RFID Data-Driven Vehicle Speed Prediction via Adaptive Extended Kalman Filter.
    Huang Y; Qian L; Feng A; Wu Y; Zhu W
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of Charge Estimation of Li-Ion Battery Based on Adaptive Sliding Mode Observer.
    Wang Q; Jiang J; Gao T; Ren S
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.