These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37420682)

  • 1. Automatic Post-Stroke Severity Assessment Using Novel Unsupervised Consensus Learning for Wearable and Camera-Based Sensor Datasets.
    Razfar N; Kashef R; Mohammadi F
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PSA-FL-CDM: A Novel Federated Learning-Based Consensus Model for Post-Stroke Assessment.
    Razfar N; Kashef R; Mohammadi F
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding stroke survivors' preferences regarding wearable sensor feedback on functional movement: a mixed-methods study.
    Demers M; Cain A; Bishop L; Gunby T; Rowe JB; Zondervan DK; Winstein CJ
    J Neuroeng Rehabil; 2023 Nov; 20(1):146. PubMed ID: 37915055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task selection for a sensor-based, wearable, upper limb training device for stroke survivors: a multi-stage approach.
    Turk R; Whitall J; Meagher C; Stokes M; Roberts S; Woodham S; Clatworthy P; Burridge J
    Disabil Rehabil; 2023 May; 45(9):1480-1487. PubMed ID: 35476616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technology-Based Compensation Assessment and Detection of Upper Extremity Activities of Stroke Survivors: Systematic Review.
    Wang X; Fu Y; Ye B; Babineau J; Ding Y; Mihailidis A
    J Med Internet Res; 2022 Jun; 24(6):e34307. PubMed ID: 35699982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Upper-Limb Impairment Level in Stroke Survivors Using Wearable Inertial Sensors and a Minimally-Burdensome Motor Task.
    Oubre B; Daneault JF; Jung HT; Whritenour K; Miranda JGV; Park J; Ryu T; Kim Y; Lee SI
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):601-611. PubMed ID: 31944983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rehab-Net: Deep Learning Framework for Arm Movement Classification Using Wearable Sensors for Stroke Rehabilitation.
    Panwar M; Biswas D; Bajaj H; Jobges M; Turk R; Maharatna K; Acharyya A
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3026-3037. PubMed ID: 30794162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic rehabilitation exercise task assessment of stroke patients based on wearable sensors with a lightweight multichannel 1D-CNN model.
    Wang J; Li C; Zhang B; Zhang Y; Shi L; Wang X; Zhou L; Xiong D
    Sci Rep; 2024 Aug; 14(1):19204. PubMed ID: 39160147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Upper Limb Movement Impairments after Stroke Using Wearable Inertial Sensing.
    Schwarz A; Bhagubai MMC; Wolterink G; Held JPO; Luft AR; Veltink PH
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study.
    Lin LF; Lin YJ; Lin ZH; Chuang LY; Hsu WC; Lin YH
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):388-396. PubMed ID: 28627862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Enhanced Internet of Things for Activity Recognition in Post-Stroke Rehabilitation.
    Jin F; Zou M; Peng X; Lei H; Ren Y
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):3851-3859. PubMed ID: 37963004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting and Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors.
    Lee SI; Adans-Dester CP; OBrien AT; Vergara-Diaz GP; Black-Schaffer R; Zafonte R; Dy JG; Bonato P
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):1871-1881. PubMed ID: 32997621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wearable System Composed of FBG-Based Soft Sensors for Trunk Compensatory Movements Detection in Post-Stroke Hemiplegic Patients.
    Lo Presti D; Zaltieri M; Bravi M; Morrone M; Caponero MA; Schena E; Sterzi S; Massaroni C
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.
    Ranganathan R; Wang R; Dong B; Biswas S
    Physiol Meas; 2017 Nov; 38(12):2222-2234. PubMed ID: 29099724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of Movement in Stroke Patients under Free Living Conditions Using Wearable Sensors: A Systematic Review.
    Bernaldo de Quirós M; Douma EH; van den Akker-Scheek I; Lamoth CJC; Maurits NM
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb movement profiles during spontaneous motion in acute stroke.
    Datta S; Karmakar CK; Rao AS; Yan B; Palaniswami M
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33735840
    [No Abstract]   [Full Text] [Related]  

  • 20. Perspectives of users for a future interactive wearable system for upper extremity rehabilitation following stroke: a qualitative study.
    Yang CL; Chui R; Mortenson WB; Servati P; Servati A; Tashakori A; Eng JJ
    J Neuroeng Rehabil; 2023 Jun; 20(1):77. PubMed ID: 37312189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.