These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37420682)
21. Towards the Ambulatory Assessment of Movement Quality in Stroke Survivors using a Wrist-worn Inertial Sensor. Lee SI; Jung HT; Park J; Jeong J; Ryu T; Kim Y; Santos VSD; Miranda JGV; Daneault JF Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2825-2828. PubMed ID: 30440989 [TBL] [Abstract][Full Text] [Related]
22. Visualization-Driven Time-Series Extraction from Wearable Systems Can Facilitate Differentiation of Passive ADL Characteristics among Stroke and Healthy Older Adults. John J; Soangra R Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062557 [TBL] [Abstract][Full Text] [Related]
23. Automated Scoring of Hemiparesis in Acute Stroke From Measures of Upper Limb Co-Ordination Using Wearable Accelerometry. Datta S; Karmakar CK; Rao AS; Yan B; Palaniswami M IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):805-816. PubMed ID: 32054582 [TBL] [Abstract][Full Text] [Related]
24. Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke. Park YS; An CS; Lim CG Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34063970 [TBL] [Abstract][Full Text] [Related]
25. A Flexible Wearable Supernumerary Robotic Limb for Chronic Stroke Patients. Ru H; Gao W; Ou W; Yang X; Li A; Fu Z; Huo J; Yang B; Zhang Y; Xiao X; Yang Z; Huang J J Vis Exp; 2023 Oct; (200):. PubMed ID: 37955369 [TBL] [Abstract][Full Text] [Related]
26. Quantification of Motor Function Post-Stroke Using Novel Combination of Wearable Inertial and Mechanomyographic Sensors. Formstone L; Huo W; Wilson S; McGregor A; Bentley P; Vaidyanathan R IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1158-1167. PubMed ID: 34129501 [TBL] [Abstract][Full Text] [Related]
27. Kinematic Assessment of Turning and Walking Tasks Among Stroke Survivors by Employing Wearable Sensors and Pressure Platform. Abdollahi M; Kuber PM; Hoang C; Shiraishi M; Soangra R; Rashedi E Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6635-6638. PubMed ID: 34892629 [TBL] [Abstract][Full Text] [Related]
28. Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial Sensors. Kim JY; Park G; Lee SA; Nam Y Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183281 [TBL] [Abstract][Full Text] [Related]
29. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929 [TBL] [Abstract][Full Text] [Related]
30. Understanding preferences of stroke survivors for feedback provision about functional movement behavior from wearable sensors: a mixed-methods study. Demers M; Cain A; Bishop L; Gunby T; Rowe JB; Zondervan D; Winstein CJ Res Sq; 2023 Apr; ():. PubMed ID: 37090658 [TBL] [Abstract][Full Text] [Related]
31. User Participatory Design of a Wearable Focal Vibration Device for Home-Based Stroke Rehabilitation. Wang H; Ghazi M; Chandrashekhar R; Rippetoe J; Duginski GA; Lepak LV; Milhan LR; James SA Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590997 [TBL] [Abstract][Full Text] [Related]
32. A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks. Yu L; Xiong D; Guo L; Wang J Comput Methods Programs Biomed; 2016 May; 128():100-10. PubMed ID: 27040835 [TBL] [Abstract][Full Text] [Related]
33. Automatic upper-extremity Brunnstrom Classification for Stroke Survivors with a Minimum Number of Tasks. Qin H; Meng L; Chen C; Zhu G; Wu X; Zhang A; Chen W Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4101-4104. PubMed ID: 36086127 [TBL] [Abstract][Full Text] [Related]
34. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings. Liu X; Rajan S; Ramasarma N; Bonato P; Lee SI IEEE J Biomed Health Inform; 2019 Mar; 23(2):599-606. PubMed ID: 29994103 [TBL] [Abstract][Full Text] [Related]
35. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221 [TBL] [Abstract][Full Text] [Related]
36. Haptic Nudges Increase Affected Upper Limb Movement During Inpatient Stroke Rehabilitation: Multiple-Period Randomized Crossover Study. Signal NEJ; McLaren R; Rashid U; Vandal A; King M; Almesfer F; Henderson J; Taylor D JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17036. PubMed ID: 32723718 [TBL] [Abstract][Full Text] [Related]
37. A Novel Wearable Device for Motor Recovery of Hand Function in Chronic Stroke Survivors. Choudhury S; Singh R; Shobhana A; Sen D; Anand SS; Shubham S; Gangopadhyay S; Baker MR; Kumar H; Baker SN Neurorehabil Neural Repair; 2020 Jul; 34(7):600-608. PubMed ID: 32452275 [No Abstract] [Full Text] [Related]
38. Enabling Stroke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training. Lee SI; Adans-Dester CP; Grimaldi M; Dowling AV; Horak PC; Black-Schaffer RM; Bonato P; Gwin JT IEEE J Transl Eng Health Med; 2018; 6():2100411. PubMed ID: 29795772 [TBL] [Abstract][Full Text] [Related]
39. Compensatory Trunk Movements in Naturalistic Reaching and Manipulation Tasks in Chronic Stroke Survivors. Jayasinghe SAL; Wang R; Gebara R; Biswas S; Ranganathan R J Appl Biomech; 2021 Jun; 37(3):215-223. PubMed ID: 33631718 [TBL] [Abstract][Full Text] [Related]
40. Biofeedback vs. game scores for reducing trunk compensation after stroke: a randomized crossover trial. Valdés BA; Van der Loos HFM Top Stroke Rehabil; 2018 Mar; 25(2):96-113. PubMed ID: 29078743 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]