These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37420778)

  • 1. Prediction of Continuous Emotional Measures through Physiological and Visual Data.
    Joudeh IO; Cretu AM; Bouchard S; Guimond S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of different affective state multimodal recognition approaches with missing data-oriented to virtual learning environments.
    Salazar C; Montoya-Múnera E; Aguilar J
    Heliyon; 2021 Jun; 7(6):e07253. PubMed ID: 34189306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet?
    Bota P; Wang C; Fred A; Silva H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emotion Recognition With Knowledge Graph Based on Electrodermal Activity.
    Perry Fordson H; Xing X; Guo K; Xu X
    Front Neurosci; 2022; 16():911767. PubMed ID: 35757534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management.
    Choi EJ; Kim DK
    Healthc Inform Res; 2018 Oct; 24(4):309-316. PubMed ID: 30443419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network.
    Ganapathy N; Veeranki YR; Kumar H; Swaminathan R
    J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensor Real-Time Affective Analytics in Virtual and Mixed Reality Medical Education Serious Games: Cohort Study.
    Antoniou PE; Arfaras G; Pandria N; Athanasiou A; Ntakakis G; Babatsikos E; Nigdelis V; Bamidis P
    JMIR Serious Games; 2020 Sep; 8(3):e17823. PubMed ID: 32876575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding subjective emotional arousal from EEG during an immersive virtual reality experience.
    Hofmann SM; Klotzsche F; Mariola A; Nikulin V; Villringer A; Gaebler M
    Elife; 2021 Oct; 10():. PubMed ID: 34708689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach.
    Sükei E; Norbury A; Perez-Rodriguez MM; Olmos PM; Artés A
    JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24465. PubMed ID: 33749612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Exact Valence and Arousal Values from EEG.
    Galvão F; Alarcão SM; Fonseca MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of electrocardiogram: numerical vs. image data for emotion recognition system.
    Sayed Ismail SNM; Ab Aziz NA; Ibrahim SZ; Nawawi SW; Alelyani S; Mohana M; Chia Chun L
    F1000Res; 2021; 10():1114. PubMed ID: 35685688
    [No Abstract]   [Full Text] [Related]  

  • 16. An Open-Source Feature Extraction Tool for the Analysis of Peripheral Physiological Data.
    Nabian M; Yin Y; Wormwood J; Quigley KS; Barrett LF; Ostadabbas S
    IEEE J Transl Eng Health Med; 2018; 6():2800711. PubMed ID: 30443441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study.
    Sultana M; Al-Jefri M; Lee J
    JMIR Mhealth Uhealth; 2020 Sep; 8(9):e17818. PubMed ID: 32990638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review.
    Sánchez-Reolid R; López de la Rosa F; Sánchez-Reolid D; López MT; Fernández-Caballero A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios.
    Marín-Morales J; Higuera-Trujillo JL; Guixeres J; Llinares C; Alcañiz M; Valenza G
    PLoS One; 2021; 16(7):e0254098. PubMed ID: 34197553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.