These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37420852)

  • 1. Effect of Gait Speed on Trajectory Prediction Using Deep Learning Models for Exoskeleton Applications.
    Kolaghassi R; Marcelli G; Sirlantzis K
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders.
    Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test of two prediction methods for minimum and maximum values of gait kinematics and kinetics data over a range of speeds.
    Fukuchi CA; Fukuchi RK; Duarte M
    Gait Posture; 2019 Sep; 73():269-272. PubMed ID: 31394369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D; Halgamuge S; Ackland DC
    J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymptomatic Genu Recurvatum reshapes lower limb sagittal joint and elevation angles during gait at different speeds.
    Dierick F; Schreiber C; Lavallée P; Buisseret F
    Knee; 2021 Mar; 29():457-468. PubMed ID: 33743261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic changes in severe hip osteoarthritis measured at matched gait speeds.
    Ismailidis P; Kaufmann M; Clauss M; Pagenstert G; Eckardt A; Ilchmann T; Mündermann A; Nüesch C
    J Orthop Res; 2021 Jun; 39(6):1253-1261. PubMed ID: 32930435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics.
    Khan SS; Khan SJ; Usman J
    Gait Posture; 2017 Mar; 53():185-192. PubMed ID: 28189095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speed-dependent reference joint trajectory generation for robotic gait support.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Biomech; 2014 Apr; 47(6):1447-58. PubMed ID: 24529911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Joint Leg Moment Estimation During Walking Using Thigh or Shank Angles.
    Eslamy M; Rastgaar M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1108-1118. PubMed ID: 36288217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
    Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X
    J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal and kinematic characteristics of gait initiation across a wide speed range.
    Stansfield B; Hawkins K; Adams S; Church D
    Gait Posture; 2018 Mar; 61():331-338. PubMed ID: 29427858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prediction method of speed-dependent walking patterns for healthy individuals.
    Fukuchi CA; Duarte M
    Gait Posture; 2019 Feb; 68():280-284. PubMed ID: 30551054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slower than normal walking speeds involve a pattern shift in joint and temporal coordination contributions.
    Little VL; McGuirk TE; Patten C
    Exp Brain Res; 2019 Nov; 237(11):2973-2982. PubMed ID: 31511954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.