These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37420852)

  • 21. Speed-dependent biomechanical changes vary across individual gait metrics post-stroke relative to neurotypical adults.
    Kettlety SA; Finley JM; Reisman DS; Schweighofer N; Leech KA
    J Neuroeng Rehabil; 2023 Jan; 20(1):14. PubMed ID: 36703214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.
    Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ
    Front Neurorobot; 2017; 11():30. PubMed ID: 28676752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper body and ankle strategies compensate for reduced lateral stability at very slow walking speeds.
    Best AN; Wu AR
    Proc Biol Sci; 2020 Oct; 287(1936):20201685. PubMed ID: 33049173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction methods to account for the effect of gait speed on lower limb angular kinematics.
    Hanlon M; Anderson R
    Gait Posture; 2006 Nov; 24(3):280-7. PubMed ID: 16311035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-Robust Real-Time Estimation of Gait Phase.
    Shushtari M; Dinovitzer H; Weng J; Arami A
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2793-2801. PubMed ID: 36121941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A PID Controller Approach to Explain Human Ankle Biomechanics across Walking Speeds.
    Herve O; Martin A; Villarreal DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2420-2423. PubMed ID: 31946387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis.
    Fukuchi CA; Fukuchi RK; Duarte M
    Syst Rev; 2019 Jun; 8(1):153. PubMed ID: 31248456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait Trajectory and Event Prediction from State Estimation for Exoskeletons During Gait.
    Tanghe K; De Groote F; Lefeber D; De Schutter J; Aertbelien E
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):211-220. PubMed ID: 31675336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to compare knee kinetics at different walking speeds?
    Meinders E; Booij MJ; van den Noort JC; Harlaar J
    Gait Posture; 2021 Jul; 88():225-230. PubMed ID: 34119777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of walking speed during gait in water of healthy elderly.
    Fantozzi S; Cortesi M; Giovanardi A; Borra D; Di Michele R; Gatta G
    Gait Posture; 2020 Oct; 82():6-13. PubMed ID: 32836027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overground gait kinematics and muscle activation patterns in the Yucatan mini pig.
    Mirkiani S; Roszko DA; O'Sullivan CL; Faridi P; Hu DS; Fang D; Everaert DG; Toossi A; Konrad PE; Robinson K; Mushahwar VK
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35172283
    [No Abstract]   [Full Text] [Related]  

  • 34. Gait kinematic analysis in patients with a mild form of central cord syndrome.
    Gil-Agudo A; Pérez-Nombela S; Forner-Cordero A; Pérez-Rizo E; Crespo-Ruiz B; del Ama-Espinosa A
    J Neuroeng Rehabil; 2011 Feb; 8():7. PubMed ID: 21288347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics.
    Asogwa CO; Nagano H; Wang K; Begg R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds.
    Blair S; Lake MJ; Ding R; Sterzing T
    Hum Mov Sci; 2018 Jun; 59():112-120. PubMed ID: 29653340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement error associated with gait cycle selection in treadmill running at various speeds.
    Fox AS; Bonacci J; Warmenhoven J; Keast MF
    PeerJ; 2023; 11():e14921. PubMed ID: 36949756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: a result of altered walking speed?
    Zeni JA; Higginson JS
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):372-8. PubMed ID: 19285768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Outdoor walking exhibits peak ankle and knee flexion differences compared to fixed and adaptive-speed treadmills in older adults.
    Parker SM; Crenshaw J; Hunt NH; Burcal C; Knarr BA
    Biomed Eng Online; 2021 Oct; 20(1):104. PubMed ID: 34654416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.