These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37420891)

  • 21. A novel approach for intelligent diagnosis and grading of diabetic retinopathy.
    Hai Z; Zou B; Xiao X; Peng Q; Yan J; Zhang W; Yue K
    Comput Biol Med; 2024 Apr; 172():108246. PubMed ID: 38471350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC).
    Das D; Biswas SK; Bandyopadhyay S
    Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network.
    Wu Z; Shi G; Chen Y; Shi F; Chen X; Coatrieux G; Yang J; Luo L; Li S
    Artif Intell Med; 2020 Aug; 108():101936. PubMed ID: 32972665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CauDR: A causality-inspired domain generalization framework for fundus-based diabetic retinopathy grading.
    Wei H; Shi P; Miao J; Zhang M; Bai G; Qiu J; Liu F; Yuan W
    Comput Biol Med; 2024 Jun; 175():108459. PubMed ID: 38701588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated grading of diabetic retinopathy using CNN with hierarchical clustering of image patches by siamese network.
    Deepa V; Sathish Kumar C; Cherian T
    Phys Eng Sci Med; 2022 Jun; 45(2):623-635. PubMed ID: 35587313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection.
    Khalifa NEM; Loey M; Taha MHN; Mohamed HNET
    Acta Inform Med; 2019 Dec; 27(5):327-332. PubMed ID: 32210500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images.
    Kobat SG; Baygin N; Yusufoglu E; Baygin M; Barua PD; Dogan S; Yaman O; Celiker U; Yildirim H; Tan RS; Tuncer T; Islam N; Acharya UR
    Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB - retrained AlexNet convolutional neural network.
    Arias-Serrano I; Velásquez-López PA; Avila-Briones LN; Laurido-Mora FC; Villalba-Meneses F; Tirado-Espin A; Cruz-Varela J; Almeida-Galárraga D
    F1000Res; 2023; 12():14. PubMed ID: 38826575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of Diabetic Eye Disease from Retinal Images Using a Deep Learning Based CenterNet Model.
    Nazir T; Nawaz M; Rashid J; Mahum R; Masood M; Mehmood A; Ali F; Kim J; Kwon HY; Hussain A
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrastive self-supervised learning for diabetic retinopathy early detection.
    Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W
    Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN.
    Alwakid G; Gouda W; Humayun M
    Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triple-DRNet: A triple-cascade convolution neural network for diabetic retinopathy grading using fundus images.
    Jian M; Chen H; Tao C; Li X; Wang G
    Comput Biol Med; 2023 Mar; 155():106631. PubMed ID: 36805216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy.
    Le D; Alam M; Yao CK; Lim JI; Hsieh YT; Chan RVP; Toslak D; Yao X
    Transl Vis Sci Technol; 2020 Jul; 9(2):35. PubMed ID: 32855839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
    Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M
    Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deploying efficient net batch normalizations (BNs) for grading diabetic retinopathy severity levels from fundus images.
    Batool S; Gilani SO; Waris A; Iqbal KF; Khan NB; Khan MI; Eldin SM; Awwad FA
    Sci Rep; 2023 Sep; 13(1):14462. PubMed ID: 37660096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection.
    Albadr MAA; Ayob M; Tiun S; Al-Dhief FT; Hasan MK
    Front Public Health; 2022; 10():925901. PubMed ID: 35979449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing diabetic retinopathy classification using deep learning.
    Alwakid G; Gouda W; Humayun M; Jhanjhi NZ
    Digit Health; 2023; 9():20552076231203676. PubMed ID: 37766903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reliable diabetic retinopathy grading via transfer learning and ensemble learning with quadratic weighted kappa metric.
    Chilukoti SV; Shan L; Tida VS; Maida AS; Hei X
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):37. PubMed ID: 38321416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.