These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37421070)

  • 1. Swirl-like Acoustofluidic Stirring Facilitates Microscale Reactions in Sessile Droplets.
    Lan H; Qian J; Liu Y; Lu S; Zhang B; Huang L; Hu X; Zhang W
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves.
    Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ
    Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of cancer cells in a sessile droplet
    Nam H; Sung HJ; Park J; Jeon JS
    Lab Chip; 2021 Dec; 22(1):47-56. PubMed ID: 34821225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deicing of Sessile Droplets Using Surface Acoustic Waves.
    Nampoothiri KN; Nath A; Satpathi NS; Sen AK
    Langmuir; 2023 Mar; 39(11):3934-3941. PubMed ID: 36883239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustofluidic generation of droplets with tunable chemical concentrations.
    Park J; Destgeer G; Afzal M; Sung HJ
    Lab Chip; 2020 Oct; 20(21):3922-3929. PubMed ID: 33026382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions.
    Bussonnière A; Baudoin M; Brunet P; Matar OB
    Phys Rev E; 2016 May; 93(5):053106. PubMed ID: 27300977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-droplet microparticle washing and enrichment using surface acoustic wave-driven acoustic radiation force.
    Park J; Destgeer G; Kim H; Cho Y; Sung HJ
    Lab Chip; 2018 Sep; 18(19):2936-2945. PubMed ID: 30140820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic streaming of microparticles using graphene-based interdigital transducers.
    Mišeikis V; Shilton RJ; Travagliati M; Agostini M; Cecchini M; Piazza V; Coletti C
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34030151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustofluidic lysis of cancer cells and Raman spectrum profiling.
    Nam H; Park JE; Waheed W; Alazzam A; Sung HJ; Jeon JS
    Lab Chip; 2023 Sep; 23(18):4117-4125. PubMed ID: 37655531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustofluidic dynamic interfacial tensiometry.
    Farooq U; Liu Y; Li P; Deng Z; Liu X; Zhou W; Yi S; Rong N; Meng L; Niu L; Zheng H
    J Acoust Soc Am; 2021 Nov; 150(5):3608. PubMed ID: 34852573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Demand Droplet Capture and Release Using Microwell-Assisted Surface Acoustic Waves.
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    Anal Chem; 2017 Feb; 89(4):2211-2215. PubMed ID: 28192923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects.
    Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ
    Lab Chip; 2020 Mar; 20(5):987-994. PubMed ID: 32010910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform.
    Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y
    Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.