BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37421706)

  • 21. Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons.
    Park H; Choi IG
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6919-6928. PubMed ID: 32572576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters.
    Cecchi G; Roccotiello E; Di Piazza S; Riggi A; Mariotti MG; Zotti M
    J Environ Sci Health B; 2017 Mar; 52(3):166-170. PubMed ID: 28121266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites.
    Ceci A; Pinzari F; Russo F; Persiani AM; Gadd GM
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):53-68. PubMed ID: 30362074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Port Sediments: Problem or Resource? A Review Concerning the Treatment and Decontamination of Port Sediments by Fungi and Bacteria.
    Cecchi G; Cutroneo L; Di Piazza S; Besio G; Capello M; Zotti M
    Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34208305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Algae bioprocess to deal with cosmetic chemical pollutants in natural ecosystems: A comprehensive review.
    Mishra P; Kiran NS; Romanholo Ferreira LF; Mulla SI
    J Basic Microbiol; 2022 Sep; 62(9):1083-1097. PubMed ID: 34913513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.
    Camargo JA; Alonso A
    Environ Int; 2006 Aug; 32(6):831-49. PubMed ID: 16781774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioremediation and microbial metabolism of benzo(a)pyrene.
    Ostrem Loss EM; Yu JH
    Mol Microbiol; 2018 Aug; 109(4):433-444. PubMed ID: 29995976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Bioremediation of heavy metal pollution by edible fungi: a review].
    Liu JF; Hu LJ; Liao DX; Su SM; Zhou ZK; Zhang S
    Ying Yong Sheng Tai Xue Bao; 2011 Feb; 22(2):543-8. PubMed ID: 21608273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review.
    Haldar S; Ghosh A
    3 Biotech; 2020 May; 10(5):205. PubMed ID: 32328403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking pollution and cancer in aquatic environments: A review.
    Baines C; Lerebours A; Thomas F; Fort J; Kreitsberg R; Gentes S; Meitern R; Saks L; Ujvari B; Giraudeau M; Sepp T
    Environ Int; 2021 Apr; 149():106391. PubMed ID: 33515955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbiome engineering for bioremediation of emerging pollutants.
    Singha LP; Shukla P
    Bioprocess Biosyst Eng; 2023 Mar; 46(3):323-339. PubMed ID: 36029349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An innovative approach of bioremediation in enzymatic degradation of xenobiotics.
    Rathore S; Varshney A; Mohan S; Dahiya P
    Biotechnol Genet Eng Rev; 2022 Apr; 38(1):1-32. PubMed ID: 35081881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses.
    Truskewycz A; Gundry TD; Khudur LS; Kolobaric A; Taha M; Aburto-Medina A; Ball AS; Shahsavari E
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31546774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wastewater cleanup using Phlebia acerina fungi: An insight into mycoremediation.
    Kumar R; Negi S; Sharma P; Prasher IB; Chaudhary S; Dhau JS; Umar A
    J Environ Manage; 2018 Dec; 228():130-139. PubMed ID: 30216827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation.
    Marques CR
    Sci Total Environ; 2016 Sep; 565():165-180. PubMed ID: 27161138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals.
    Harms H; Schlosser D; Wick LY
    Nat Rev Microbiol; 2011 Mar; 9(3):177-92. PubMed ID: 21297669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the Potential of Endophytic Microorganisms and Nanoparticles for Enhanced Water Remediation.
    Manganyi MC; Dikobe TB; Maseme MR
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach.
    Saravanan A; Kumar PS; Duc PA; Rangasamy G
    Chemosphere; 2023 Feb; 313():137323. PubMed ID: 36410512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Action mechanisms of microorganisms on arsenic and the feasibility of utilizing fungi remediation of arsenic-contaminated soil].
    Su SM; Zeng XB; Bai LY; Li LF
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3266-72. PubMed ID: 21443018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvements in Bioremediation Agents and Their Modified Strains in Mediating Environmental Pollution.
    Ahmad A; Mustafa G; Rana A; Zia AR
    Curr Microbiol; 2023 May; 80(6):208. PubMed ID: 37169903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.