These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37422116)
1. Potential contribution of chlorella vulgaris to carbon-nitrogen turnover in freshwater ecosystems after a great sandstorm event. Hou Z; Zhou Q; Xie Y; Mo F; Kang W; Wang Q Environ Res; 2023 Oct; 234():116569. PubMed ID: 37422116 [TBL] [Abstract][Full Text] [Related]
2. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Porcal P; Koprivnjak JF; Molot LA; Dillon PJ Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen, phosphorus and high CO Kumari K; Samantaray S; Sahoo D; Tripathy BC Photosynth Res; 2021 May; 148(1-2):17-32. PubMed ID: 33813714 [TBL] [Abstract][Full Text] [Related]
4. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Williams CJ; Frost PC; Morales-Williams AM; Larson JH; Richardson WB; Chiandet AS; Xenopoulos MA Glob Chang Biol; 2016 Feb; 22(2):613-26. PubMed ID: 26390994 [TBL] [Abstract][Full Text] [Related]
5. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
6. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions. Abedini Najafabadi H; Malekzadeh M; Jalilian F; Vossoughi M; Pazuki G Bioresour Technol; 2015 Mar; 180():311-7. PubMed ID: 25621723 [TBL] [Abstract][Full Text] [Related]
7. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris]. Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation. Cho K; Cho DH; Heo J; Kim U; Lee YJ; Choi DY; Kim HS Bioresour Technol; 2019 Jun; 281():118-125. PubMed ID: 30811998 [TBL] [Abstract][Full Text] [Related]
9. Novel bioconversions of municipal effluent and CO₂ into protein riched Chlorella vulgaris biomass. Li C; Yang H; Li Y; Cheng L; Zhang M; Zhang L; Wang W Bioresour Technol; 2013 Mar; 132():171-7. PubMed ID: 23399495 [TBL] [Abstract][Full Text] [Related]
10. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Smith VH Environ Sci Pollut Res Int; 2003; 10(2):126-39. PubMed ID: 12729046 [TBL] [Abstract][Full Text] [Related]
11. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium. Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399 [TBL] [Abstract][Full Text] [Related]
13. The apoptosis of Chlorella vulgaris and the release of intracellular organic matter under metalimnetic oxygen minimum conditions. Wang R; Wang S; Cao R; Han J; Huang T; Wen G Sci Total Environ; 2024 Jan; 907():168001. PubMed ID: 37875207 [TBL] [Abstract][Full Text] [Related]
14. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris]. Wang S; Zhao SX; Wei CL; Yu SY; Shi JP; Zhang BG Huan Jing Ke Xue; 2014 Apr; 35(4):1462-7. PubMed ID: 24946603 [TBL] [Abstract][Full Text] [Related]
15. Photosynthesis Responses of Tibetan Freshwater Algae Zhang Y; Chen Z; Li X; Wu X; Chen L; Wang G Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612715 [TBL] [Abstract][Full Text] [Related]
16. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479 [TBL] [Abstract][Full Text] [Related]
17. Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis. Zhou Q; Li F; Ge F; Liu N; Kuang Y Environ Sci Pollut Res Int; 2016 Oct; 23(19):19450-60. PubMed ID: 27381355 [TBL] [Abstract][Full Text] [Related]
18. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
19. The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris. Beddow J; Johnson RJ; Lawson T; Breckels MN; Webster RJ; Smith BE; Rowland SJ; Whitby C Chemosphere; 2016 Feb; 145():416-23. PubMed ID: 26692519 [TBL] [Abstract][Full Text] [Related]