These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37422143)

  • 1. Investigating freezing-induced acidity changes in citrate buffers.
    Susrisweta B; Veselý L; Štůsek R; Hauptmann A; Loerting T; Heger D
    Int J Pharm; 2023 Aug; 643():123211. PubMed ID: 37422143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?
    Vetráková Ľ; Vykoukal V; Heger D
    Int J Pharm; 2017 Sep; 530(1-2):316-325. PubMed ID: 28779984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making good's buffers good for freezing: The acidity changes and their elimination via mixing with sodium phosphate.
    Veselý L; Susrisweta B; Heger D
    Int J Pharm; 2021 Jan; 593():120128. PubMed ID: 33271311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    J Pharm Sci; 2011 Apr; 100(4):1288-93. PubMed ID: 24081466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying.
    Shalaev EY; Johnson-Elton TD; Chang L; Pikal MJ
    Pharm Res; 2002 Feb; 19(2):195-201. PubMed ID: 11883647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical cryomicroscopy and differential scanning calorimetry of buffer solutions containing cryoprotectants.
    Hauptmann A; Hoelzl G; Loerting T
    Eur J Pharm Biopharm; 2021 Jun; 163():127-140. PubMed ID: 33813056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of freeze-drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems.
    Govindarajan R; Chatterjee K; Gatlin L; Suryanarayanan R; Shalaev EY
    J Pharm Sci; 2006 Jul; 95(7):1498-510. PubMed ID: 16721795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations into the stabilization of drugs by sugar glasses: III. The influence of various high-pH buffers.
    Eriksson JH; Hinrichs WL; de Jong GJ; Somsen GW; Frijlink HW
    Pharm Res; 2003 Sep; 20(9):1437-43. PubMed ID: 14567639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems II (effect of buffer).
    Alkhamis KA
    Drug Dev Ind Pharm; 2009 Apr; 35(4):408-16. PubMed ID: 19016102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of crystallizing and non-crystallizing cosolutes on succinate buffer crystallization and the consequent pH shift in frozen solutions.
    Sundaramurthi P; Suryanarayanan R
    Pharm Res; 2011 Feb; 28(2):374-85. PubMed ID: 20927571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.
    Sundaramurthi P; Suryanarayanan R
    J Phys Chem B; 2011 Jun; 115(21):7154-64. PubMed ID: 21561117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying.
    Thorat AA; Suryanarayanan R
    Pharm Res; 2019 May; 36(7):98. PubMed ID: 31087169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying.
    Oesterle J; Franks F; Auffret T
    Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants.
    Krausková Ľ; Procházková J; Klašková M; Filipová L; Chaloupková R; Malý S; Damborský J; Heger D
    Int J Pharm; 2016 Jul; 509(1-2):41-49. PubMed ID: 27224008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt precipitation during the freeze-concentration of phosphate buffer solutions.
    Murase N; Franks F
    Biophys Chem; 1989 Nov; 34(3):293-300. PubMed ID: 2611352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing.
    Bhatnagar BS; Pikal MJ; Bogner RH
    J Pharm Sci; 2008 Feb; 97(2):798-814. PubMed ID: 17506511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
    Gómez G; Pikal MJ; Rodríguez-Hornedo N
    Pharm Res; 2001 Jan; 18(1):90-7. PubMed ID: 11336359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration.
    Varshney DB; Kumar S; Shalaev EY; Sundaramurthi P; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2007 Mar; 24(3):593-604. PubMed ID: 17245648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.