BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37422275)

  • 1. Three dimensional structures of the inner and outer pig petrous bone using FIB-SEM: Implications for development and ancient DNA preservation.
    Ibrahim J; Rechav K; Boaretto E; Weiner S
    J Struct Biol; 2023 Sep; 215(3):107998. PubMed ID: 37422275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures.
    Raguin E; Rechav K; Shahar R; Weiner S
    Acta Biomater; 2021 Feb; 121():497-513. PubMed ID: 33217569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization.
    McKee MD; Buss DJ; Reznikov N
    J Struct Biol; 2022 Mar; 214(1):107823. PubMed ID: 34915130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone.
    Ibrahim J; Brumfeld V; Addadi Y; Rubin S; Weiner S; Boaretto E
    PLoS One; 2022; 17(10):e0269348. PubMed ID: 36282813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ellipsoidal mesoscale mineralization pattern in human cortical bone revealed in 3D by plasma focused ion beam serial sectioning.
    Binkley DM; Deering J; Yuan H; Gourrier A; Grandfield K
    J Struct Biol; 2020 Nov; 212(2):107615. PubMed ID: 32927057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 3D organization of the mineralized scales of the sturgeon has structures reminiscent of dentin and bone: A FIB-SEM study.
    Milgram J; Rehav K; Ibrahim J; Shahar R; Weiner S
    J Struct Biol; 2023 Dec; 215(4):108045. PubMed ID: 37977509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy.
    Buss DJ; Reznikov N; McKee MD
    J Struct Biol; 2020 Nov; 212(2):107603. PubMed ID: 32805412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between nanostructure and micromechanical properties of healing bone.
    Hoerth RM; Kerschnitzki M; Aido M; Schmidt I; Burghammer M; Duda GN; Fratzl P; Willie BM; Wagermaier W
    J Mech Behav Biomed Mater; 2018 Jan; 77():258-266. PubMed ID: 28957701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography.
    Lee BEJ; Langelier B; Grandfield K
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100657. PubMed ID: 34296817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure and Nanoporosity of Human Bone Shown with Correlative On-Axis Electron and Spectroscopic Tomographies.
    Micheletti C; Shah FA; Palmquist A; Grandfield K
    ACS Nano; 2023 Dec; 17(24):24710-24724. PubMed ID: 37846873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures.
    Reznikov N; Almany-Magal R; Shahar R; Weiner S
    Bone; 2013 Feb; 52(2):676-83. PubMed ID: 23153959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of apatite crystals in human woven bone.
    Su X; Sun K; Cui FZ; Landis WJ
    Bone; 2003 Feb; 32(2):150-62. PubMed ID: 12633787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography.
    Varga P; Pacureanu A; Langer M; Suhonen H; Hesse B; Grimal Q; Cloetens P; Raum K; Peyrin F
    Acta Biomater; 2013 Sep; 9(9):8118-27. PubMed ID: 23707503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Imaging of Collagen Gels with Focused Ion Beam Milling and Scanning Electron Microscopy.
    Reese SP; Farhang N; Poulson R; Parkman G; Weiss JA
    Biophys J; 2016 Oct; 111(8):1797-1804. PubMed ID: 27760365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.