These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 374224)

  • 1. Satellite DNA and heterochromatin variants: the case for unequal mitotic crossing over.
    Kurnit DM
    Hum Genet; 1979 Mar; 47(2):169-86. PubMed ID: 374224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man.
    Yurov YB; Mitkevich SP; Alexandrov IA
    Hum Genet; 1987 Jun; 76(2):157-64. PubMed ID: 3475246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular cytogenetic research on the polymorphism of segments of the constitutive heterochromatin in human chromosomes].
    Iurov IuB; Mitkevich SP; Aleksandrov IA
    Genetika; 1988 Feb; 24(2):356-65. PubMed ID: 3360319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation.
    Yunis JJ; Yasmineh WG
    Science; 1971 Dec; 174(4015):1200-9. PubMed ID: 4943851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterochromatin and satellite DNA in man: properties and prospects.
    Miklos GL; John B
    Am J Hum Genet; 1979 May; 31(3):264-80. PubMed ID: 111544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative cytogenetic study after treatment of mouse spermatogonia with mitomycin C.
    Adler ID
    Mutat Res; 1974 Jun; 23(3):369-79. PubMed ID: 4407799
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular topography of the secondary constriction region (qh) of human chromosome 9 with an unusual euchromatic band.
    Verma RS; Luke S; Brennan JP; Mathews T; Conte RA; Macera MJ
    Am J Hum Genet; 1993 May; 52(5):981-6. PubMed ID: 8488847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of pericentromeric heterochromatin in beetles--satellite DNAs as active regulatory elements.
    Pezer Z; Ugarković D
    Cytogenet Genome Res; 2009; 124(3-4):268-76. PubMed ID: 19556779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cloned repeated DNA sequence in human chromosome heteromorphisms.
    Gosden JR; Lawrie SS; Cooke HJ
    Cytogenet Cell Genet; 1981; 29(1):32-9. PubMed ID: 6161756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in satellite DNA profiles--causes and effects.
    Ugarković D; Plohl M
    EMBO J; 2002 Nov; 21(22):5955-9. PubMed ID: 12426367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Satellite DNA in the karyotype evolution of domestic animals--clinical considerations.
    Adega F; Guedes-Pinto H; Chaves R
    Cytogenet Genome Res; 2009; 126(1-2):12-20. PubMed ID: 20016153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform distribution of satellite DNA variants on the chromosomes of tenebrionid species Alphitobius diaperinus and Tenebrio molitor.
    Bruvo B; Plohl M; Ugarković D
    Hereditas; 1995; 123(1):69-75. PubMed ID: 8598348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCR amplification of tandemly repeated DNA: analysis of intra- and interchromosomal sequence variation and homologous unequal crossing-over in human alpha satellite DNA.
    Warburton PE; Willard HF
    Nucleic Acids Res; 1992 Nov; 20(22):6033-42. PubMed ID: 1461735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LINE-related component of mouse heterochromatin and complex chromocenters' composition.
    Kuznetsova IS; Ostromyshenskii DI; Komissarov AS; Prusov AN; Waisertreiger IS; Gorbunova AV; Trifonov VA; Ferguson-Smith MA; Podgornaya OI
    Chromosome Res; 2016 Sep; 24(3):309-23. PubMed ID: 27116673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitotic misbehavior of a Drosophila melanogaster satellite in ring chromosomes: insights into intragenomic conflict among heterochromatic sequences.
    Ferree PM
    Fly (Austin); 2014; 8(2):101-7. PubMed ID: 25483254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymporphism of human C-band heterochromatin. II. Family studies with suggestive evidence for somatic crossing over.
    Craig-Holmes AP; Moore FB; Shaw MW
    Am J Hum Genet; 1975 Mar; 27(2):178-89. PubMed ID: 47710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective.
    Macgregor HC; Sessions SK
    Philos Trans R Soc Lond B Biol Sci; 1986 Jan; 312(1154):243-59. PubMed ID: 2870520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.