BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37422437)

  • 1. Diverse enzymatic chemistry for propionate side chain cleavages in tetrapyrrole biosynthesis.
    Ushimaru R; Lyu J; Abe I
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37422437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple C-C Bond Cleavage Reactions Catalyzed by Tolyporphin Tetrapyrrole Biosynthetic Enzymes.
    Ushimaru R; Lyu J; Ling M; Abe I
    J Am Chem Soc; 2023 May; 145(17):9834-9839. PubMed ID: 37074904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of the modified tetrapyrroles-the pigments of life.
    Bryant DA; Hunter CN; Warren MJ
    J Biol Chem; 2020 May; 295(20):6888-6925. PubMed ID: 32241908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during heme d
    Boss L; Oehme R; Billig S; Birkemeyer C; Layer G
    FEBS J; 2017 Dec; 284(24):4314-4327. PubMed ID: 29076625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and function of tetrapyrrole biosynthesis in plants and algae.
    Brzezowski P; Richter AS; Grimm B
    Biochim Biophys Acta; 2015 Sep; 1847(9):968-85. PubMed ID: 25979235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline).
    Stasiuk R; KrucoƄ T; Matlakowska R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual Enzymatic C-C Bond Formation and Cleavage Reactions during Natural Product Biosynthesis.
    Ushimaru R
    Chem Pharm Bull (Tokyo); 2024; 72(3):241-247. PubMed ID: 38432903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis.
    Wang P; Ji S; Grimm B
    J Exp Bot; 2022 Aug; 73(14):4624-4636. PubMed ID: 35536687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria.
    Czarnecki O; Grimm B
    J Exp Bot; 2012 Feb; 63(4):1675-87. PubMed ID: 22231500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical SAM Enzymes Involved in Tetrapyrrole Biosynthesis and Insertion.
    Layer G; Jahn M; Moser J; Jahn D
    ACS Bio Med Chem Au; 2022 Jun; 2(3):196-204. PubMed ID: 37101575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the delicate balance of tetrapyrrole biosynthesis.
    Yin L; Bauer CE
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1622):20120262. PubMed ID: 23754814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase.
    Schubert HL; Raux E; Matthews MA; Phillips JD; Wilson KS; Hill CP; Warren MJ
    Biochem Soc Trans; 2002 Aug; 30(4):595-600. PubMed ID: 12196144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role.
    Zhang D; Tang Z; Liu W
    Acc Chem Res; 2018 Jun; 51(6):1496-1506. PubMed ID: 29792672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrapyrrole Metabolism in Arabidopsis thaliana.
    Tanaka R; Kobayashi K; Masuda T
    Arabidopsis Book; 2011; 9():e0145. PubMed ID: 22303270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two chloroplast-localized MORF proteins act as chaperones to maintain tetrapyrrole biosynthesis.
    Yuan J; Ma T; Ji S; Hedtke B; Grimm B; Lin R
    New Phytol; 2022 Sep; 235(5):1868-1883. PubMed ID: 35615903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular hijacking of siroheme for the synthesis of heme and d1 heme.
    Bali S; Lawrence AD; Lobo SA; Saraiva LM; Golding BT; Palmer DJ; Howard MJ; Ferguson SJ; Warren MJ
    Proc Natl Acad Sci U S A; 2011 Nov; 108(45):18260-5. PubMed ID: 21969545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles.
    Senge MO; MacGowan SA; O'Brien JM
    Chem Commun (Camb); 2015 Dec; 51(96):17031-63. PubMed ID: 26482230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrapyrrole Signaling in Plants.
    Larkin RM
    Front Plant Sci; 2016; 7():1586. PubMed ID: 27807442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.