BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3742244)

  • 1. Non-neurogenic adrenal catecholamine release in the neonatal rat: exocytosis or diffusion?
    Seidler FJ; Slotkin TA
    Brain Res; 1986 Aug; 393(2):274-7. PubMed ID: 3742244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-neurogenic mechanism for reserpine-induced release of catecholamines from the adrenal medulla of neonatal rats: possible modulation by opiate receptors.
    Chantry CJ; Seidler FJ; Slotkin TA
    Neuroscience; 1982 Mar; 7(3):673-8. PubMed ID: 6280102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of catecholamine content of previously depleted adrenal medulla in vitro: importance of synthesis in maintaining the catecholamine stores.
    Wakade AR; Wakade TD; Malhotra RK
    J Neurochem; 1988 Sep; 51(3):820-9. PubMed ID: 2900877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenomedullary function in the neonatal rat: responses to acute hypoxia.
    Seidler FJ; Slotkin TA
    J Physiol; 1985 Jan; 358():1-16. PubMed ID: 2858585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered reactivity of the rat adrenal medulla.
    Carbonaro DA; Mitchell JP; Hall FL; Vulliet PR
    Brain Res Bull; 1988 Sep; 21(3):451-8. PubMed ID: 3214750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of monoclonal antibodies in the study of the interaction between adrenal medullary cell membranes and chromaffin granules.
    Bohner K; Boons J; Gheuens J; Konings F; De Potter WP
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1006-12. PubMed ID: 2417600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis.
    Hampton RY; Holz RW
    J Cell Biol; 1983 Apr; 96(4):1082-8. PubMed ID: 6833392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of metalloendoproteinase inhibitors on secretion and intracellular free calcium in bovine adrenal chromaffin cells.
    Harris B; Cheek TR; Burgoyne RD
    Biochim Biophys Acta; 1986 Oct; 889(1):1-5. PubMed ID: 3533161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does the stimulus define exocytosis in adrenal chromaffin cells?
    Marengo FD; Cárdenas AM
    Pflugers Arch; 2018 Jan; 470(1):155-167. PubMed ID: 28852855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catecholamine release from bovine adrenal chromaffin cells during anoxia or metabolic inhibition.
    Dry KL; Phillips JH; Dart AM
    Circ Res; 1991 Aug; 69(2):466-74. PubMed ID: 1860185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration.
    Mojet MH; Mills E; Duchen MR
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):175-89. PubMed ID: 9350628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells.
    Mahata SK; Zheng H; Mahata S; Liu X; Patel KP
    J Endocrinol; 2016 Sep; 230(3):309-23. PubMed ID: 27402067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granule swelling in stimulated bovine adrenal chromaffin cells: regulation by internal granule pH.
    Ornberg RL; Furuya S; Goping G; Kuijpers GA
    Cell Tissue Res; 1995 Jan; 279(1):85-92. PubMed ID: 7895265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine release from the adrenal medulla.
    Perlman RL; Chalfie M
    Clin Endocrinol Metab; 1977 Nov; 6(3):551-76. PubMed ID: 338214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress.
    Kumar GK; Rai V; Sharma SD; Ramakrishnan DP; Peng YJ; Souvannakitti D; Prabhakar NR
    J Physiol; 2006 Aug; 575(Pt 1):229-39. PubMed ID: 16777938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells.
    Zhou Z; Misler S
    J Biol Chem; 1995 Feb; 270(8):3498-505. PubMed ID: 7876083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Granule matrix property and rapid "kiss-and-run" exocytosis contribute to the different kinetics of catecholamine release from carotid glomus and adrenal chromaffin cells at matched quantal size.
    Wang N; Lee AK; Yan L; Simpson MR; Tse A; Tse FW
    Can J Physiol Pharmacol; 2012 Jun; 90(6):791-801. PubMed ID: 22506963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the uptake of exogenous catecholamines by adrenal chromaffin cells and nerve endings.
    Kent C; Coupland RE
    Cell Tissue Res; 1981; 221(2):371-83. PubMed ID: 6796272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous measurements of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of fura-2 in cocultured cells.
    Cheek TR; Jackson TR; O'Sullivan AJ; Moreton RB; Berridge MJ; Burgoyne RD
    J Cell Biol; 1989 Sep; 109(3):1219-27. PubMed ID: 2768340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different osmotic stability of two storage pools of adrenomedullary catecholamines: possible relevance to exocytotic release of the hormones.
    Serck-Hanssen G
    Acta Physiol Scand; 1984 Jan; 120(1):137-40. PubMed ID: 6720322
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.