These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37423054)
1. Role of acidic hydrochar on dechlorination of waste PVC in high temperature hydrothermal treatment and fuel properties enhancement of solid residues. Ghalandari V; Volpe M; Codignole Lùz F; Messineo A; Reza T Waste Manag; 2023 Sep; 169():125-136. PubMed ID: 37423054 [TBL] [Abstract][Full Text] [Related]
2. Acidic process fluid from hydrothermal carbonization improves dechlorination of waste PVC and produces clean solid and liquid fuels. Ghalandari V; Reza T Chemosphere; 2024 Sep; 363():142969. PubMed ID: 39089340 [TBL] [Abstract][Full Text] [Related]
3. Hydrothermal carbonisation of polyvinyl chloride in ethanol-water/water system for solid fuels: Dechlorination, characteristics analysis of hydrochar, and reaction path. Feng L; Hong C; Xing Y; Ling W; Hu J; Zhao C; Wang Y Environ Res; 2024 Mar; 244():117905. PubMed ID: 38101723 [TBL] [Abstract][Full Text] [Related]
4. Co-hydrothermal carbonization of sewage sludge and polyvinyl chloride for the production of high-quality solid fuel with low nitrogen content. Xie L; Gou L; Wang Y; Dai L Sci Total Environ; 2022 Jan; 804():150094. PubMed ID: 34508936 [TBL] [Abstract][Full Text] [Related]
5. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Zhang X; Zhang L; Li A Bioresour Technol; 2019 Dec; 294():122113. PubMed ID: 31542495 [TBL] [Abstract][Full Text] [Related]
6. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production. Lu X; Ma X; Chen X; Yao Z; Zhang C Bioresour Technol; 2020 Apr; 301():122763. PubMed ID: 31972403 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo. Yao Z; Ma X Bioresour Technol; 2018 Jan; 247():302-309. PubMed ID: 28950139 [TBL] [Abstract][Full Text] [Related]
8. Solid fuel production from co-hydrothermal carbonization of polyvinyl chloride and corncob: Higher dechlorination efficiency and process water recycling. Li Z; Niu S; Liu J; Wang Y Sci Total Environ; 2022 Oct; 843():157082. PubMed ID: 35780902 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges. Ling M; Ma D; Hu X; Liu Z; Wang D; Feng Q Chemosphere; 2023 Mar; 316():137718. PubMed ID: 36592841 [TBL] [Abstract][Full Text] [Related]
10. Valorization of cannabis waste via hydrothermal carbonization: solid fuel production and characterization. Kanchanatip E; Prasertsung N; Thasnas N; Grisdanurak N; Wantala K Environ Sci Pollut Res Int; 2023 Aug; 30(39):90318-90327. PubMed ID: 36370310 [TBL] [Abstract][Full Text] [Related]
11. Characterization of hydrochar and process water from the hydrothermal carbonization of Refuse Derived Fuel. Nobre C; Alves O; Durão L; Şen A; Vilarinho C; Gonçalves M Waste Manag; 2021 Feb; 120():303-313. PubMed ID: 33333468 [TBL] [Abstract][Full Text] [Related]
12. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor. Zabaleta I; Marchetti P; Lohri CR; Zurbrügg C Environ Technol; 2017 Nov; 38(22):2856-2865. PubMed ID: 28067116 [TBL] [Abstract][Full Text] [Related]
13. Dechlorination of polyvinyl chloride electric wires by hydrothermal treatment using K Gandon-Ros G; Soler A; Aracil I; Gómez-Rico MF Waste Manag; 2020 Feb; 102():204-211. PubMed ID: 31683076 [TBL] [Abstract][Full Text] [Related]
14. Co-hydrothermal carbonization of polyvinyl chloride and lignocellulose biomasses for chlorine and inorganics removal. Zhang J; Chen Y; Xia X; Fu B; Lin C; Jia G; Cui X; Liu F; Zhao P; Li Y Waste Manag; 2023 Feb; 156():198-207. PubMed ID: 36493663 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the clean characteristics and combustion behavior of hydrochar derived from food waste towards solid biofuel production. Wang T; Zhai Y; Zhu Y; Gan X; Zheng L; Peng C; Wang B; Li C; Zeng G Bioresour Technol; 2018 Oct; 266():275-283. PubMed ID: 29982048 [TBL] [Abstract][Full Text] [Related]
16. Fuel Characteristics and Removal of AAEMs in Hydrochars Derived from Sewage Sludge and Corn Straw. Guo S; Xiao W; Liu Z; Zhao D; Chen K; Zhao C; Li X; Li G Molecules; 2023 Jan; 28(2):. PubMed ID: 36677840 [TBL] [Abstract][Full Text] [Related]
17. Insight into chlorine evolution during hydrothermal carbonization of medical waste model. Ma D; Feng Q; Chen B; Cheng X; Chen K; Li J J Hazard Mater; 2019 Dec; 380():120847. PubMed ID: 31326836 [TBL] [Abstract][Full Text] [Related]
18. Co-hydrothermal carbonization of water hyacinth and polyvinyl chloride: Optimization of process parameters and characterization of hydrochar. Zhang C; Ma X; Huang T; Zhou Y; Tian Y Bioresour Technol; 2020 Oct; 314():123676. PubMed ID: 32599525 [TBL] [Abstract][Full Text] [Related]
19. Migration Mechanism of Chlorine during Hydrothermal Treatment of Rigid PVC Plastics. Zhang L; Wang Q; Xu F; Wang Z Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687533 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]