BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37423305)

  • 61. Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p.
    Karanasios E; Barbosa AD; Sembongi H; Mari M; Han GS; Reggiori F; Carman GM; Siniossoglou S
    Mol Biol Cell; 2013 Jul; 24(13):2124-33. PubMed ID: 23657815
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity.
    Miner GE; Starr ML; Hurst LR; Fratti RA
    Traffic; 2017 May; 18(5):315-329. PubMed ID: 28276191
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets.
    Adeyo O; Horn PJ; Lee S; Binns DD; Chandrahas A; Chapman KD; Goodman JM
    J Cell Biol; 2011 Mar; 192(6):1043-55. PubMed ID: 21422231
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme.
    Chae M; Han GS; Carman GM
    J Biol Chem; 2012 Nov; 287(48):40186-96. PubMed ID: 23071111
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli.
    Carman GM
    Biochim Biophys Acta; 1997 Sep; 1348(1-2):45-55. PubMed ID: 9370315
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth.
    Santos-Rosa H; Leung J; Grimsey N; Peak-Chew S; Siniossoglou S
    EMBO J; 2005 Jun; 24(11):1931-41. PubMed ID: 15889145
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lipins, lipids and nuclear envelope structure.
    Siniossoglou S
    Traffic; 2009 Sep; 10(9):1181-7. PubMed ID: 19490535
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion.
    Sasser T; Qiu QS; Karunakaran S; Padolina M; Reyes A; Flood B; Smith S; Gonzales C; Fratti RA
    J Biol Chem; 2012 Jan; 287(3):2221-36. PubMed ID: 22121197
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes.
    Ashburner BP; Lopes JM
    Mol Cell Biol; 1995 Mar; 15(3):1709-15. PubMed ID: 7862162
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.
    Henry SA; Kohlwein SD; Carman GM
    Genetics; 2012 Feb; 190(2):317-49. PubMed ID: 22345606
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway.
    Han S; Bahmanyar S; Zhang P; Grishin N; Oegema K; Crooke R; Graham M; Reue K; Dixon JE; Goodman JM
    J Biol Chem; 2012 Jan; 287(5):3123-37. PubMed ID: 22134922
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mammalian Mg2+-independent phosphatidate phosphatase (PAP2) displays diacylglycerol pyrophosphate phosphatase activity.
    Dillon DA; Chen X; Zeimetz GM; Wu WI; Waggoner DW; Dewald J; Brindley DN; Carman GM
    J Biol Chem; 1997 Apr; 272(16):10361-6. PubMed ID: 9099673
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways.
    Theofilopoulos S; Lykidis A; Leondaritis G; Mangoura D
    Biochim Biophys Acta; 2008; 1781(11-12):731-42. PubMed ID: 18930839
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase.
    Toke DA; Bennett WL; Oshiro J; Wu WI; Voelker DR; Carman GM
    J Biol Chem; 1998 Jun; 273(23):14331-8. PubMed ID: 9603941
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of the yeast actin patch protein App1p phosphatidate phosphatase.
    Chae M; Carman GM
    J Biol Chem; 2013 Mar; 288(9):6427-37. PubMed ID: 23335564
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth.
    Han GS; O'Hara L; Carman GM; Siniossoglou S
    J Biol Chem; 2008 Jul; 283(29):20433-42. PubMed ID: 18458075
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pah1p negatively regulates the expression of V-ATPase genes as well as vacuolar acidification.
    Sherr GL; LaMassa N; Li E; Phillips G; Shen CH
    Biochem Biophys Res Commun; 2017 Sep; 491(3):693-700. PubMed ID: 28756231
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A phosphatidate phosphatase double mutant provides a new insight into plant membrane lipid homeostasis.
    Eastmond PJ; Quettier AL; Kroon JT; Craddock C; Adams N; Slabas AR
    Plant Signal Behav; 2011 Apr; 6(4):526-7. PubMed ID: 21406976
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lipid synthesis and membrane contact sites: a crossroads for cellular physiology.
    Fernández-Murray JP; McMaster CR
    J Lipid Res; 2016 Oct; 57(10):1789-1805. PubMed ID: 27521373
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae.
    Oshiro J; Han GS; Carman GM
    Biochim Biophys Acta; 2003 Nov; 1635(1):1-9. PubMed ID: 14642771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.