These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 37423342)
1. SARS-CoV-2 vaccine breakthrough infections (VBI) by Omicron variant (B.1.1.529) and consequences in structural and functional impact. Abduljaleel Z; Melebari S; Athar M; Dehlawi S; Udhaya Kumar S; Aziz SA; Dannoun AI; Malik SM; Thasleem J; George Priya Doss C Cell Signal; 2023 Sep; 109():110798. PubMed ID: 37423342 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants. Neerukonda SN; Wang R; Vassell R; Baha H; Lusvarghi S; Liu S; Wang T; Weiss CD; Wang W J Virol; 2022 Sep; 96(17):e0114022. PubMed ID: 36000843 [TBL] [Abstract][Full Text] [Related]
3. Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape. Rochman ND; Faure G; Wolf YI; Freddolino PL; Zhang F; Koonin EV mBio; 2022 Apr; 13(2):e0013522. PubMed ID: 35289643 [TBL] [Abstract][Full Text] [Related]
4. A Glycosylated RBD Protein Induces Enhanced Neutralizing Antibodies against Omicron and Other Variants with Improved Protection against SARS-CoV-2 Infection. Shi J; Zheng J; Tai W; Verma AK; Zhang X; Geng Q; Wang G; Guan X; Malisheni MM; Odle AE; Zhang W; Li F; Perlman S; Du L J Virol; 2022 Sep; 96(17):e0011822. PubMed ID: 35972290 [TBL] [Abstract][Full Text] [Related]
5. Wild-type SARS-CoV-2 neutralizing immunity decreases across variants and over time but correlates well with diagnostic testing. O'Shea KM; Schuler CF; Chen J; Troost JP; Wong PT; Chen K; O'Shea DR; Peng W; Gherasim C; Manthei DM; Valdez R; Baldwin JL; Baker JR Front Immunol; 2023; 14():1055429. PubMed ID: 36845123 [TBL] [Abstract][Full Text] [Related]
6. Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. Schubert M; Bertoglio F; Steinke S; Heine PA; Ynga-Durand MA; Maass H; Sammartino JC; Cassaniti I; Zuo F; Du L; Korn J; Milošević M; Wenzel EV; Krstanović F; Polten S; Pribanić-Matešić M; Brizić I; Baldanti F; Hammarström L; Dübel S; Šustić A; Marcotte H; Strengert M; Protić A; Piralla A; Pan-Hammarström Q; Čičin-Šain L; Hust M BMC Med; 2022 Mar; 20(1):102. PubMed ID: 35236358 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant. Ren W; Zhang Y; Rao J; Wang Z; Lan J; Liu K; Zhang X; Hu X; Yang C; Zhong G; Zhang R; Wang X; Shan C; Ding Q mBio; 2023 Apr; 14(2):e0041623. PubMed ID: 37010428 [TBL] [Abstract][Full Text] [Related]
8. Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger Binding to ACE2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies. Shah M; Woo HG Front Immunol; 2021; 12():830527. PubMed ID: 35140714 [TBL] [Abstract][Full Text] [Related]
9. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Akkız H Front Med (Lausanne); 2022; 9():849217. PubMed ID: 35669924 [TBL] [Abstract][Full Text] [Related]
10. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assessment. Kumar S; Karuppanan K; Subramaniam G J Med Virol; 2022 Oct; 94(10):4780-4791. PubMed ID: 35680610 [TBL] [Abstract][Full Text] [Related]
11. Antibody Avidity and Neutralizing Response against SARS-CoV-2 Omicron Variant after Infection or Vaccination. Dapporto F; Marchi S; Leonardi M; Piu P; Lovreglio P; Decaro N; Buonvino N; Stufano A; Lorusso E; Bombardieri E; Ruello A; Viviani S; Molesti E; Trombetta CM; Manenti A; Montomoli E J Immunol Res; 2022; 2022():4813199. PubMed ID: 36093434 [TBL] [Abstract][Full Text] [Related]
12. Omicron infection increases IgG binding to spike protein of predecessor variants. Mahalingam G; Periyasami Y; Arjunan P; Subaschandrabose RK; Mathivanan TV; Mathew RS; Devi RKT; Premkumar PS; Muliyil J; Srivastava A; Moorthy M; Marepally S J Med Virol; 2023 Feb; 95(2):e28419. PubMed ID: 36546401 [TBL] [Abstract][Full Text] [Related]
13. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815 [TBL] [Abstract][Full Text] [Related]
14. Investigation of SARS-CoV-2 IgG Binding Capability to Variants of the SARS-CoV-2 Virus. Johnson L; De Gascun CF; Hassan J Viral Immunol; 2024 Oct; 37(8):404-410. PubMed ID: 39263777 [TBL] [Abstract][Full Text] [Related]
15. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. Kumar S; Thambiraja TS; Karuppanan K; Subramaniam G J Med Virol; 2022 Apr; 94(4):1641-1649. PubMed ID: 34914115 [TBL] [Abstract][Full Text] [Related]
16. In vitro data suggest that Indian delta variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion. Augusto G; Mohsen MO; Zinkhan S; Liu X; Vogel M; Bachmann MF Allergy; 2022 Jan; 77(1):111-117. PubMed ID: 34453338 [TBL] [Abstract][Full Text] [Related]
17. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Bharathi M; Sivamaruthi BS; Kesika P; Thangaleela S; Chaiyasut C Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200677 [TBL] [Abstract][Full Text] [Related]
19. Improved Binding Affinity of Omicron's Spike Protein for the Human Angiotensin-Converting Enzyme 2 Receptor Is the Key behind Its Increased Virulence. Kumar R; Murugan NA; Srivastava V Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328828 [TBL] [Abstract][Full Text] [Related]