These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37423366)

  • 1. Nanomedicine innovations in spinal cord injury management: Bridging the gap.
    Rahmanian M; Ghahremani A; Kesharwani P; Oroojalian F; Sahebkar A
    Environ Res; 2023 Oct; 235():116563. PubMed ID: 37423366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology for the Treatment of Spinal Cord Injury.
    Zimmermann R; Vieira Alves Y; Sperling LE; Pranke P
    Tissue Eng Part B Rev; 2021 Aug; 27(4):353-365. PubMed ID: 33135599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current multi-scale biomaterials for tissue regeneration following spinal cord injury.
    Zhang Y; Wu Z; Wu J; Li T; Jiang F; Yang B
    Neurochem Int; 2024 Sep; 178():105801. PubMed ID: 38971503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments.
    Saremi J; Mahmoodi N; Rasouli M; Ranjbar FE; Mazaheri EL; Akbari M; Hasanzadeh E; Azami M
    Biomed Pharmacother; 2022 Feb; 146():112529. PubMed ID: 34906773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Application of Biomaterials in Spinal Cord Injury.
    Feng C; Deng L; Yong YY; Wu JM; Qin DL; Yu L; Zhou XG; Wu AG
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective.
    Abbas WA; Ibrahim ME; El-Naggar M; Abass WA; Abdullah IH; Awad BI; Allam NK
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6490-6509. PubMed ID: 33320628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment.
    Xiang W; Cao H; Tao H; Jin L; Luo Y; Tao F; Jiang T
    Int J Biol Macromol; 2023 Mar; 230():123447. PubMed ID: 36708903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Strategies for Spinal Cord Regeneration.
    Costăchescu B; Niculescu AG; Dabija MG; Teleanu RI; Grumezescu AM; Eva L
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions.
    Walsh CM; Wychowaniec JK; Brougham DF; Dooley D
    Pharmacol Ther; 2022 Jun; 234():108043. PubMed ID: 34813862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention.
    Hayta E; Elden H
    J Chem Neuroanat; 2018 Jan; 87():25-31. PubMed ID: 28803968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury.
    Li Z; Wang Q; Hu H; Zheng W; Gao C
    Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34384071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles.
    Siebert JR; Eade AM; Osterhout DJ
    Biomed Res Int; 2015; 2015():752572. PubMed ID: 26491685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord.
    Grijalvo S; Nieto-Díaz M; Maza RM; Eritja R; Díaz DD
    Biotechnol J; 2019 Dec; 14(12):e1900275. PubMed ID: 31677223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Effective Neural Circuit Reconstruction After Spinal Cord Injury: Use of Stem Cells and Biomaterials.
    Hou Y; Liu X; Guo Y; Liu D; Guo P; Liu J
    World Neurosurg; 2022 May; 161():82-89. PubMed ID: 35144032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterials for spinal cord repair.
    Haggerty AE; Oudega M
    Neurosci Bull; 2013 Aug; 29(4):445-59. PubMed ID: 23864367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative Therapies for Spinal Cord Injury.
    Ashammakhi N; Kim HJ; Ehsanipour A; Bierman RD; Kaarela O; Xue C; Khademhosseini A; Seidlits SK
    Tissue Eng Part B Rev; 2019 Dec; 25(6):471-491. PubMed ID: 31452463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel and Nanomedicine-Based Multimodal Therapeutic Strategies for Spinal Cord Injury.
    Yin P; Liang W; Han B; Yang Y; Sun D; Qu X; Hai Y; Luo D
    Small Methods; 2024 Jan; 8(1):e2301173. PubMed ID: 37884459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury.
    Shortiss C; Howard L; McMahon SS
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.