These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37423372)

  • 1. Comparative environmental assessment of low and high CaO fly ash in mass concrete mixtures for enhanced sustainability: Impact of fly ash type and transportation.
    Orozco CR; Tangtermsirikul S; Sugiyama T; Babel S
    Environ Res; 2023 Oct; 234():116579. PubMed ID: 37423372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the endpoint impacts, challenges, and opportunities of fly ash utilization for sustainable concrete construction.
    Orozco C; Tangtermsirikul S; Sugiyama T; Babel S
    Sci Rep; 2023 Oct; 13(1):18254. PubMed ID: 37880405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.
    Garrabrants AC; Kosson DS; DeLapp R; van der Sloot HA
    Chemosphere; 2014 May; 103():131-9. PubMed ID: 24359922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of autoclaved aerated fly ash and concrete block production: a case study in China.
    Shi Y; Li Y; Tang Y; Yuan X; Wang Q; Hong J; Zuo J
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25432-25444. PubMed ID: 31309421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very high volume fly ash green concrete for applications in India.
    Yu J; Mishra DK; Wu C; Leung CK
    Waste Manag Res; 2018 Jun; 36(6):520-526. PubMed ID: 29692220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment and cost analysis of fly ash-rice husk ash blended alkali-activated concrete.
    Fernando S; Gunasekara C; Law DW; Nasvi MCM; Setunge S; Dissanayake R
    J Environ Manage; 2021 Oct; 295():113140. PubMed ID: 34198175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of coal fly ash based on pH, CaO content, glassy components, and leachability of toxic elements.
    Seki T; Ogawa Y; Inoue C
    Environ Monit Assess; 2019 May; 191(6):358. PubMed ID: 31073910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential CO
    Jamora JB; Gudia SEL; Go AW; Giduquio MB; Loretero ME
    Waste Manag; 2020 Feb; 103():137-145. PubMed ID: 31874417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of silica fume and fly ash as cementitious material on hardened properties and embodied carbon of roller compacted concrete.
    Kumar A; Bheel N; Ahmed I; Rizvi SH; Kumar R; Jhatial AA
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):1210-1222. PubMed ID: 34350574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary blended fly ash concrete with improved chemical resistance in natural and industrial environments.
    Harilal M; George RP; Philip J; Albert SK
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):28107-28132. PubMed ID: 33533001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of waste recycling coal bottom ash and sugarcane bagasse ash as cement and sand replacement material to produce sustainable concrete.
    Bheel N; Khoso S; Baloch MH; Benjeddou O; Alwetaishi M
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):52399-52411. PubMed ID: 35258727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.
    Kosson DS; Garrabrants AC; DeLapp R; van der Sloot HA
    Chemosphere; 2014 May; 103():140-7. PubMed ID: 24360846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete.
    Teixeira ER; Camões A; Branco FG; Aguiar JB; Fangueiro R
    Waste Manag; 2019 Jul; 94():39-48. PubMed ID: 31279394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of combined utilization of marble dust powder and fly ash on the properties and sustainability of high-strength concrete.
    Rid ZA; Shah SNR; Memon MJ; Jhatial AA; Keerio MA; Goh WI
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28005-28019. PubMed ID: 34985632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on durability improvement of fly ash concrete with durability improving admixture.
    Quan HZ; Kasami H
    ScientificWorldJournal; 2014; 2014():818103. PubMed ID: 25013870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment.
    Dandautiya R; Singh AP
    Waste Manag; 2019 Nov; 99():90-101. PubMed ID: 31473485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of disposed fly ash from landfill to replace Portland cement.
    Cheerarot R; Jaturapitakkul C
    Waste Manag; 2004; 24(7):701-9. PubMed ID: 15288302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.
    Menéndez E; Álvaro AM; Hernández MT; Parra JL
    J Environ Manage; 2014 Jan; 133():275-83. PubMed ID: 24412590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.
    Siriruang C; Toochinda P; Julnipitawong P; Tangtermsirikul S
    J Environ Manage; 2016 Apr; 170():70-8. PubMed ID: 26803257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.