BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37423883)

  • 1. Custom-made meniscus biofabrication.
    Vignes H; Smaida R; Conzatti G; Hua G; Benkirane-Jessel N
    Trends Biotechnol; 2023 Dec; 41(12):1467-1470. PubMed ID: 37423883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds.
    Barceló X; Eichholz K; Gonçalves I; Kronemberger GS; Dufour A; Garcia O; Kelly DJ
    Biofabrication; 2023 Nov; 16(1):. PubMed ID: 37939395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4D Biofabrication: Materials, Methods, and Applications.
    Ionov L
    Adv Healthc Mater; 2018 Sep; 7(17):e1800412. PubMed ID: 29978564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication-A Year in Review.
    Ramos T; Moroni L
    Tissue Eng Part C Methods; 2020 Feb; 26(2):91-106. PubMed ID: 31856696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers.
    Stocco TD; Moreira Silva MC; Corat MAF; Gonçalves Lima G; Lobo AO
    Int J Nanomedicine; 2022; 17():1111-1124. PubMed ID: 35309966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication Using Electrochemical Devices and Systems.
    Ino K; Ozawa F; Dang N; Hiramoto K; Hino S; Akasaka R; Nashimoto Y; Shiku H
    Adv Biosyst; 2020 Apr; 4(4):e1900234. PubMed ID: 32293161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting and the current applications in tissue engineering.
    Huang Y; Zhang XF; Gao G; Yonezawa T; Cui X
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28675678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing light in biofabrication.
    Levato R; Lim KS
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36723633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs.
    Chansoria P; Narayanan LK; Schuchard K; Shirwaiker R
    Biofabrication; 2019 Apr; 11(3):035015. PubMed ID: 30943460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs.
    Pedde RD; Mirani B; Navaei A; Styan T; Wong S; Mehrali M; Thakur A; Mohtaram NK; Bayati A; Dolatshahi-Pirouz A; Nikkhah M; Willerth SM; Akbari M
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28370405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration.
    Wang X; Ding Y; Li H; Mo X; Wu J
    J Biomed Mater Res B Appl Biomater; 2022 Apr; 110(4):923-949. PubMed ID: 34619021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D biofabrication for soft tissue and cartilage engineering.
    Turnbull G; Clarke J; Picard F; Zhang W; Riches P; Li B; Shu W
    Med Eng Phys; 2020 Aug; 82():13-39. PubMed ID: 32709263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.