These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37423912)

  • 1. EnCPdock: a web-interface for direct conjoint comparative analyses of complementarity and binding energetics in inter-protein associations.
    Biswas G; Mukherjee D; Dutta N; Ghosh P; Basu S
    J Mol Model; 2023 Jul; 29(8):239. PubMed ID: 37423912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CP
    Basu S
    J Mol Model; 2017 Dec; 24(1):8. PubMed ID: 29218430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic complementarity at protein/protein interfaces.
    McCoy AJ; Chandana Epa V; Colman PM
    J Mol Biol; 1997 May; 268(2):570-84. PubMed ID: 9159491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic complementarity at the interface drives transient protein-protein interactions.
    Grassmann G; Di Rienzo L; Gosti G; Leonetti M; Ruocco G; Miotto M; Milanetti E
    Sci Rep; 2023 Jun; 13(1):10207. PubMed ID: 37353566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electrostatics towards broad functional specificity.
    Nilofer C; Sukhwal A; Mohanapriya A; Kangueane P
    Bioinformation; 2017; 13(6):164-173. PubMed ID: 28729757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-complementarity within proteins: bridging the gap between binding and folding.
    Basu S; Bhattacharyya D; Banerjee R
    Biophys J; 2012 Jun; 102(11):2605-14. PubMed ID: 22713576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines.
    González AJ; Liao L
    BMC Bioinformatics; 2010 Oct; 11():537. PubMed ID: 21034480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of homo-oligomer interfaces of proteins from the complementarity of molecular surface, electrostatic potential and hydrophobicity.
    Tsuchiya Y; Kinoshita K; Nakamura H
    Protein Eng Des Sel; 2006 Sep; 19(9):421-9. PubMed ID: 16837482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces.
    Teyra J; Doms A; Schroeder M; Pisabarro MT
    BMC Bioinformatics; 2006 Mar; 7():104. PubMed ID: 16512892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Chen CT; Peng HP; Jian JW; Tsai KC; Chang JY; Yang EW; Chen JB; Ho SY; Hsu WL; Yang AS
    PLoS One; 2012; 7(6):e37706. PubMed ID: 22701576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of interfacial residues of human Interleukin15 to the specificity and affinity for its private alpha-receptor.
    Sakamoto S; Caaveiro JM; Sano E; Tanaka Y; Kudou M; Tsumoto K
    J Mol Biol; 2009 Jun; 389(5):880-94. PubMed ID: 19406127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of interface and surface areas in protein-protein binding affinity prediction: A machine learning analysis based on linear regression and artificial neural network.
    Yang YX; Wang P; Zhu BT
    Biophys Chem; 2022 Apr; 283():106762. PubMed ID: 35196613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape complementarity of protein-protein complexes at multiple resolutions.
    Zhang Q; Sanner M; Olson AJ
    Proteins; 2009 May; 75(2):453-67. PubMed ID: 18837463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles.
    Brender JR; Zhang Y
    PLoS Comput Biol; 2015 Oct; 11(10):e1004494. PubMed ID: 26506533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic complementarity in protein-protein docking.
    Berchanski A; Shapira B; Eisenstein M
    Proteins; 2004 Jul; 56(1):130-42. PubMed ID: 15162493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated unsupervised-supervised modeling and prediction of protein-peptide affinities at structural level.
    Zhou P; Wen L; Lin J; Mei L; Liu Q; Shang S; Li J; Shu J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plausible blockers of Spike RBD in SARS-CoV2-molecular design and underlying interaction dynamics from high-level structural descriptors.
    Basu S; Chakravarty D; Bhattacharyya D; Saha P; Patra HK
    J Mol Model; 2021 May; 27(6):191. PubMed ID: 34057647
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.