BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37423968)

  • 1. 5-(3',4'-Dihydroxyphenyl)-γ-Valerolactone Is a Substrate for Human Paraoxonase: A Novel Pathway in Flavan-3-ol Metabolism.
    Momma TY; Kuhnle GGC; Fong RY; Ensunsa JL; Crozier A; Schroeter H; Ottaviani JI
    Mol Nutr Food Res; 2023 Sep; 67(17):e2300281. PubMed ID: 37423968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation at scale of microbiome-derived metabolites as biomarker of flavan-3-ol intake in epidemiological studies.
    Ottaviani JI; Fong R; Kimball J; Ensunsa JL; Britten A; Lucarelli D; Luben R; Grace PB; Mawson DH; Tym A; Wierzbicki A; Khaw KT; Schroeter H; Kuhnle GGC
    Sci Rep; 2018 Jun; 8(1):9859. PubMed ID: 29959422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavan-3-ol-methylxanthine interactions: Modulation of flavan-3-ol bioavailability in volunteers with a functional colon and an ileostomy.
    Ottaviani JI; Fong RY; Borges G; Kimball J; Ensunsa JL; Medici V; Pourshahidi LK; Kane E; Ward K; Durkan R; Dobani S; Lawther R; O'Connor G; Gill CIR; Schroeter H; Crozier A
    Free Radic Biol Med; 2023 Feb; 196():1-8. PubMed ID: 36621554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans.
    Wiese S; Esatbeyoglu T; Winterhalter P; Kruse HP; Winkler S; Bub A; Kulling SE
    Mol Nutr Food Res; 2015 Apr; 59(4):610-21. PubMed ID: 25546356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, analytical features, and biological relevance of 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols.
    Sanchez-Patan F; Chioua M; Garrido I; Cueva C; Samadi A; Marco-Contelles J; Moreno-Arribas MV; Bartolome B; Monagas M
    J Agric Food Chem; 2011 Jul; 59(13):7083-91. PubMed ID: 21627328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans.
    Mullen W; Borges G; Donovan JL; Edwards CA; Serafini M; Lean ME; Crozier A
    Am J Clin Nutr; 2009 Jun; 89(6):1784-91. PubMed ID: 19403635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the bioavailability of flavan-3-ols in humans: A systematic review and comprehensive data analysis.
    Di Pede G; Mena P; Bresciani L; Achour M; Lamuela-Raventós RM; Estruch R; Landberg R; Kulling SE; Wishart D; Rodriguez-Mateos A; Crozier A; Manach C; Del Rio D
    Mol Aspects Med; 2023 Feb; 89():101146. PubMed ID: 36207170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Urinary Phenyl-γ-Valerolactones as Biomarkers of Dietary Flavan-3-ol Exposure.
    Parmenter BH; Shinde S; Croft K; Murray K; Bondonno CP; Genoni A; Christophersen CT; Bindon K; Kay C; Mena P; Del Rio D; Hodgson JM; Bondonno NP
    J Nutr; 2023 Aug; 153(8):2193-2204. PubMed ID: 37394116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic profile and urinary excretion of phenyl-γ-valerolactones upon consumption of cranberry: a dose-response relationship.
    Favari C; Mena P; Curti C; Istas G; Heiss C; Del Rio D; Rodriguez-Mateos A
    Food Funct; 2020 May; 11(5):3975-3985. PubMed ID: 32396592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.
    Monagas M; Urpi-Sarda M; Sánchez-Patán F; Llorach R; Garrido I; Gómez-Cordovés C; Andres-Lacueva C; Bartolomé B
    Food Funct; 2010 Dec; 1(3):233-53. PubMed ID: 21776473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioavailability and catabolism of green tea flavan-3-ols in humans.
    Del Rio D; Calani L; Cordero C; Salvatore S; Pellegrini N; Brighenti F
    Nutrition; 2010; 26(11-12):1110-6. PubMed ID: 20080030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Screening of Native (Poly)phenols and Gut-Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavan-3-ol Metabolite.
    Rubert J; Gatto P; Pancher M; Sidarovich V; Curti C; Mena P; Del Rio D; Quattrone A; Mattivi F
    Mol Nutr Food Res; 2022 Nov; 66(21):e2101043. PubMed ID: 35394679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine.
    Brindani N; Mena P; Calani L; Benzie I; Choi SW; Brighenti F; Zanardi F; Curti C; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28440064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function.
    Mele L; Carobbio S; Brindani N; Curti C; Rodriguez-Cuenca S; Bidault G; Mena P; Zanotti I; Vacca M; Vidal-Puig A; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28276197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity.
    Mena P; Bresciani L; Brindani N; Ludwig IA; Pereira-Caro G; Angelino D; Llorach R; Calani L; Brighenti F; Clifford MN; Gill CIR; Crozier A; Curti C; Del Rio D
    Nat Prod Rep; 2019 May; 36(5):714-752. PubMed ID: 30468210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes.
    Mena P; Ludwig IA; Tomatis VB; Acharjee A; Calani L; Rosi A; Brighenti F; Ray S; Griffin JL; Bluck LJ; Del Rio D
    Eur J Nutr; 2019 Jun; 58(4):1529-1543. PubMed ID: 29616322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples.
    Anesi A; Mena P; Bub A; Ulaszewska M; Del Rio D; Kulling SE; Mattivi F
    Metabolites; 2019 Oct; 9(11):. PubMed ID: 31671768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark chocolate modulates platelet function with a mechanism mediated by flavan-3-ol metabolites.
    Montagnana M; Danese E; Angelino D; Mena P; Rosi A; Benati M; Gelati M; Salvagno GL; Favaloro EJ; Del Rio D; Lippi G
    Medicine (Baltimore); 2018 Dec; 97(49):e13432. PubMed ID: 30544424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in
    Angelino D; Carregosa D; Domenech-Coca C; Savi M; Figueira I; Brindani N; Jang S; Lakshman S; Molokin A; Urban JF; Davis CD; Brito MA; Kim KS; Brighenti F; Curti C; Bladé C; Del Bas JM; Stilli D; Solano-Aguilar GI; Santos CND; Del Rio D; Mena P
    Nutrients; 2019 Nov; 11(11):. PubMed ID: 31694297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites.
    Wang L; Liu R; Yan F; Chen W; Zhang M; Lu Q; Huang B; Liu R
    Food Funct; 2024 Jan; 15(2):580-590. PubMed ID: 37927225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.