These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37424061)

  • 41. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure.
    Wang Y; Mu JJ; Liu FQ; Ren KY; Xiao HY; Yang Z; Yuan ZY
    Braz J Med Biol Res; 2014 Feb; 47(3):223-30. PubMed ID: 24676494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury.
    Mattson DL
    Am J Physiol Renal Physiol; 2014 Sep; 307(5):F499-508. PubMed ID: 25007871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Salt restriction in kidney disease--a missed therapeutic opportunity?
    Ritz E; Mehls O
    Pediatr Nephrol; 2009 Jan; 24(1):9-17. PubMed ID: 18535843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Is renal ß-adrenergic-WNK4-NCC pathway important in salt hypertension of Dahl rats?
    Zicha J; Hojná S; Vaňourková Z; Kopkan L; Vaněčková I
    Physiol Res; 2019 Dec; 68(6):873-882. PubMed ID: 31647304
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The blood pressure-salt sensitivity paradigm: pathophysiologically sound yet of no practical value.
    Galletti F; Strazzullo P
    Nephrol Dial Transplant; 2016 Sep; 31(9):1386-91. PubMed ID: 27521374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.
    Geurts AM; Mattson DL; Liu P; Cabacungan E; Skelton MM; Kurth TM; Yang C; Endres BT; Klotz J; Liang M; Cowley AW
    Hypertension; 2015 Feb; 65(2):447-55. PubMed ID: 25452472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct renal effects of a fructose-enriched diet: interaction with high salt intake.
    Ares GR; Ortiz PA
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1078-81. PubMed ID: 26447210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Salt sensitivity in hypertension. Renal and cardiovascular implications.
    Campese VM
    Hypertension; 1994 Apr; 23(4):531-50. PubMed ID: 8144222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Curr Opin Nephrol Hypertens; 2018 Mar; 27(2):83-92. PubMed ID: 29278541
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional NADPH oxidase 2 in T cells amplifies salt-sensitive hypertension and associated renal damage.
    Walton SD; Dasinger JH; Burns EC; Cherian-Shaw M; Abais-Battad JM; Mattson DL
    Am J Physiol Renal Physiol; 2023 Aug; 325(2):F214-F223. PubMed ID: 37318993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute and long-term effects of cannabinoids on hypertension and kidney injury.
    Golosova D; Levchenko V; Kravtsova O; Palygin O; Staruschenko A
    Sci Rep; 2022 Apr; 12(1):6080. PubMed ID: 35413977
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.
    Gordish KL; Kassem KM; Ortiz PA; Beierwaltes WH
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28408634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease.
    Odermatt A
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F919-31. PubMed ID: 21880837
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovascular events.
    Kimura G; Dohi Y; Fukuda M
    Hypertens Res; 2010 Jun; 33(6):515-20. PubMed ID: 20379191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dietary fructose and hypertension.
    Madero M; Perez-Pozo SE; Jalal D; Johnson RJ; Sánchez-Lozada LG
    Curr Hypertens Rep; 2011 Feb; 13(1):29-35. PubMed ID: 20957458
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lysine and salt-sensitive hypertension.
    Dissanayake LV; Palygin O; Staruschenko A
    Curr Opin Nephrol Hypertens; 2024 Jul; 33(4):441-446. PubMed ID: 38639736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of Mammalian Target of Rapamycin Complex 1 Attenuates Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats.
    Kumar V; Wollner C; Kurth T; Bukowy JD; Cowley AW
    Hypertension; 2017 Oct; 70(4):813-821. PubMed ID: 28827472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emerging evidence of an effect of salt on innate and adaptive immunity.
    Evans RDR; Antonelou M; Henderson S; Walsh SB; Salama AD
    Nephrol Dial Transplant; 2019 Dec; 34(12):2007-2014. PubMed ID: 30521016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different effects of angiotensin receptor blockade on end-organ damage in salt-dependent and salt-independent hypertension.
    Maitland K; Bridges L; Davis WP; Loscalzo J; Pointer MA
    Circulation; 2006 Aug; 114(9):905-11. PubMed ID: 16923758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension.
    Kurtz TW; DiCarlo SE; Pravenec M; Schmidlin O; Tanaka M; Morris RC
    Kidney Int; 2016 Nov; 90(5):965-973. PubMed ID: 27546606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.