These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 37424078)

  • 41. Surface-modified and sulfide electrolyte-infiltrated LiNi
    Huang G; Zhong Y; Xia X; Wang X; Gu C; Tu J
    J Colloid Interface Sci; 2023 Feb; 632(Pt A):11-18. PubMed ID: 36403373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of Structural, Electrochemical, and Thermal Properties of High-Energy Density Ni-Rich LiNi
    Levartovsky Y; Chakraborty A; Kunnikuruvan S; Maiti S; Grinblat J; Talianker M; Major DT; Aurbach D
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34145-34156. PubMed ID: 34256562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LiNi
    Diao H; Jia M; Zhao N; Guo X
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24929-24937. PubMed ID: 35594362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sn-Doping and Li
    Zhu H; Shen R; Tang Y; Yan X; Liu J; Song L; Fan Z; Zheng S; Chen Z
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries.
    Hua W; Zhang J; Zheng Z; Liu W; Peng X; Guo XD; Zhong B; Wang YJ; Wang X
    Dalton Trans; 2014 Oct; 43(39):14824-32. PubMed ID: 25162932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing the Cycling and Rate Performance of Ni-Rich Cathodes for Lithium-Ion Batteries by Bulk-Phase Engineering and Surface Reconstruction.
    Li Z; Yi H; Li X; Gao P; Zhu Y
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28537-28549. PubMed ID: 38781051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing the Integral Structural and Thermal Stability of Ultrahigh-Ni Cathodes via Morphology Refinement and In Situ Interfacial Engineering.
    Jiang Y; Guo F; Qiu L; Liu T; Hu Y; Yang W; Liu Y; Sun Y; Wu Z; Song Y; Guo X
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35072-35081. PubMed ID: 37439569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing High-Voltage Performance of Ni-Rich Cathode by Surface Modification of Self-Assembled NASICON Fast Ionic Conductor LiZr
    Zhang J; Zhang J; Ou X; Wang C; Peng C; Zhang B
    ACS Appl Mater Interfaces; 2019 May; 11(17):15507-15516. PubMed ID: 30973700
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oriented Gradient Doping of Zirconium in Ni-Rich Cathode to Achieve Ultrahigh Stability and Rate Capability.
    Mu Y; Chen X; Ming H; Zhang S; Zhu X; Qiu J
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49289-49298. PubMed ID: 37815329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of Al doping on the structure and electrochemical performance of the Co-free LiNi
    Tian R; Yin S; Zhang H; Song D; Ma Y; Zhang L
    Dalton Trans; 2023 Aug; 52(33):11716-11724. PubMed ID: 37555387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic study of Co-free LiNi
    Seenivasan M; Yang CC; Wu SH; Chang JK; Jose R
    J Colloid Interface Sci; 2024 May; 661():1070-1081. PubMed ID: 38368230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface Engineering and Trace Cobalt Doping Suppress Overall Li/Ni Mixing of Li-rich Mn-based Cathode Materials.
    Chen J; Huang Z; Zeng W; Ma J; Cao F; Wang T; Tian W; Mu S
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6649-6657. PubMed ID: 35080843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries.
    Xu C; Xiang W; Wu Z; Xu Y; Li Y; Wang Y; Xiao Y; Guo X; Zhong B
    ACS Appl Mater Interfaces; 2019 May; 11(18):16629-16638. PubMed ID: 31002220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One-Step Molten-Salt-Assisted Approach for Direct Preparation and Regeneration of LiNi
    Wang R; Li Q; Wang F; Ding J; An B; Ruan J; Sun D; Fang F; Wang F
    Small; 2024 Sep; 20(38):e2400762. PubMed ID: 38794872
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Oxygen Pressurization on Li
    Xiao P; Li W; Chen S; Li G; Dai Z; Feng M; Chen X; Yang W
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31851-31861. PubMed ID: 35799357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of single-crystal ternary cathode materials
    Huang C; Xia X; Chi Z; Yang Z; Huang H; Chen Z; Tang W; Wu G; Chen H; Zhang W
    Nanoscale; 2022 Jul; 14(27):9724-9735. PubMed ID: 35762909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stacking Fault Formation in LiNi
    Mukai K
    ACS Omega; 2023 Nov; 8(44):41897-41908. PubMed ID: 37970059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries.
    Cho W; Lim YJ; Lee SM; Kim JH; Song JH; Yu JS; Kim YJ; Park MS
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38915-38921. PubMed ID: 30335357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Three in One Strategy to Achieve Zirconium Doping, Boron Doping, and Interfacial Coating for Stable LiNi
    Feng Z; Rajagopalan R; Zhang S; Sun D; Tang Y; Ren Y; Wang H
    Adv Sci (Weinh); 2021 Jan; 8(2):2001809. PubMed ID: 33510998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ni-Rich LiNi
    Chen S; He T; Su Y; Lu Y; Bao L; Chen L; Zhang Q; Wang J; Chen R; Wu F
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29732-29743. PubMed ID: 28799739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.