These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37424350)

  • 1. Tropolones and Thailandepsin B as Lead-like Natural Compounds in the Development of Potent and Selective Histone Deacetylase Inhibitors.
    Pal D; Lal P
    Curr Drug Targets; 2023; 24(9):698-717. PubMed ID: 37424350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities.
    Wang C; Henkes LM; Doughty LB; He M; Wang D; Meyer-Almes FJ; Cheng YQ
    J Nat Prod; 2011 Oct; 74(10):2031-8. PubMed ID: 21793558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tropolones as lead-like natural products: the development of potent and selective histone deacetylase inhibitors.
    Ononye SN; VanHeyst MD; Oblak EZ; Zhou W; Ammar M; Anderson AC; Wright DL
    ACS Med Chem Lett; 2013 Aug; 4(8):757-61. PubMed ID: 24900743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the antiproliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells.
    Ononye SN; Vanheyst MD; Giardina C; Wright DL; Anderson AC
    Bioorg Med Chem; 2014 Apr; 22(7):2188-93. PubMed ID: 24613456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of HDAC6, but not HDAC3 and HDAC4 in the penumbra after photothrombotic stroke in the rat cerebral cortex and the neuroprotective effects of α-phenyl tropolone, HPOB, and sodium valproate.
    Demyanenko SV; Dzreyan VA; Uzdensky AB
    Brain Res Bull; 2020 Sep; 162():151-165. PubMed ID: 32592806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of novel class of histone deacetylase inhibitors as potential anticancer agents.
    El-Awady R; Saleh E; Hamoudi R; Ramadan WS; Mazitschek R; Nael MA; Elokely KM; Abou-Gharbia M; Childers WE; Srinivasulu V; Aloum L; Menon V; Al-Tel TH
    Bioorg Med Chem; 2021 Jul; 42():116251. PubMed ID: 34116381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis.
    Li J; Falcone ER; Holstein SA; Anderson AC; Wright DL; Wiemer AJ
    Pharmacol Res; 2016 Nov; 113(Pt A):438-448. PubMed ID: 27663262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.
    Wang Y; Wallach J; Duane S; Wang Y; Wu J; Wang J; Adejare A; Ma H
    Drug Des Devel Ther; 2017; 11():1369-1382. PubMed ID: 28496307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, biological evaluation, and molecular docking analysis of novel linker-less benzamide based potent and selective HDAC3 inhibitors.
    Routholla G; Pulya S; Patel T; Abdul Amin S; Adhikari N; Biswas S; Jha T; Ghosh B
    Bioorg Chem; 2021 Sep; 114():105050. PubMed ID: 34120025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.
    Choi SY; Kee HJ; Jin L; Ryu Y; Sun S; Kim GR; Jeong MH
    Biomed Pharmacother; 2018 May; 101():145-154. PubMed ID: 29482060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylase 8-selective inhibitors.
    Suzuki T; Muto N; Bando M; Itoh Y; Masaki A; Ri M; Ota Y; Nakagawa H; Iida S; Shirahige K; Miyata N
    ChemMedChem; 2014 Mar; 9(3):657-64. PubMed ID: 24403121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens.
    Krucinska J; Falcone E; Erlandsen H; Hazeen A; Lombardo MN; Estrada A; Robinson VL; Anderson AC; Wright DL
    Biochemistry; 2019 Mar; 58(9):1188-1197. PubMed ID: 30714720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
    Zhao C; Zang J; Ding Q; Inks ES; Xu W; Chou CJ; Zhang Y
    Eur J Med Chem; 2018 Apr; 150():282-291. PubMed ID: 29533873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Synthesis and Biological Evaluation of New HDAC1 and HDAC2 Inhibitors Endowed with Ligustrazine as a Novel Cap Moiety.
    Al-Sanea MM; Gotina L; Mohamed MF; Grace Thomas Parambi D; Gomaa HAM; Mathew B; Youssif BGM; Alharbi KS; Elsayed ZM; Abdelgawad MA; Eldehna WM
    Drug Des Devel Ther; 2020; 14():497-508. PubMed ID: 32103894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Romidepsin (FK228), A Histone Deacetylase Inhibitor and its Analogues in Cancer Chemotherapy.
    Pojani E; Barlocco D
    Curr Med Chem; 2021; 28(7):1290-1303. PubMed ID: 32013816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and biological evaluation of novel thioquinazolinone-based 2-aminobenzamide derivatives as potent histone deacetylase (HDAC) inhibitors.
    Cheng C; Yun F; He J; Ullah S; Yuan Q
    Eur J Med Chem; 2019 Jul; 173():185-202. PubMed ID: 31003060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thailandepsins are new small molecule class I HDAC inhibitors with potent cytotoxic activity in ovarian cancer cells: a preclinical study of epigenetic ovarian cancer therapy.
    Wilson AJ; Cheng YQ; Khabele D
    J Ovarian Res; 2012 Apr; 5(1):12. PubMed ID: 22531354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Potent Panobinostat Histone Deacetylase Inhibitor Derivatives: Molecular Considerations for Enhanced Isozyme Selectivity between HDAC2 and HDAC8.
    Stoddard SV; May XA; Rivas F; Dodson K; Vijayan S; Adhika S; Parker K; Watkins DL
    Mol Inform; 2019 Mar; 38(3):e1800080. PubMed ID: 30369061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers.
    Niegisch G; Knievel J; Koch A; Hader C; Fischer U; Albers P; Schulz WA
    Urol Oncol; 2013 Nov; 31(8):1770-9. PubMed ID: 22944197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, biological evaluation and molecular docking study of arylcarboxamido piperidine and piperazine-based hydroxamates as potential HDAC8 inhibitors with promising anticancer activity.
    Trivedi P; Adhikari N; Amin SA; Bobde Y; Ganesh R; Jha T; Ghosh B
    Eur J Pharm Sci; 2019 Oct; 138():105046. PubMed ID: 31421254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.