These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37425334)

  • 1. Modalities of sequential human robot collaboration trigger different modifications of trunk oscillations.
    Ranaldi S; Bibbo D; Corvini G; Schmid M; Conforto S
    Front Neurorobot; 2023; 17():1183164. PubMed ID: 37425334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imposing Motion Variability for Ergonomic Human-Robot Collaboration.
    Zolotas M; Luo R; Bazzi S; Saha D; Mabulu K; Kloeckl K; Padır T
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):123-134. PubMed ID: 38498062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ergonomic human-robot collaboration in industry: A review.
    Lorenzini M; Lagomarsino M; Fortini L; Gholami S; Ajoudani A
    Front Robot AI; 2022; 9():813907. PubMed ID: 36743294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of task decision autonomy on physical ergonomics and robot performances in an industrial human-robot collaboration scenario.
    Pantano M; Yang Q; Blumberg A; Reisch R; Hauser T; Lutz B; Regulin D; Kamps T; Traganos K; Lee D
    Front Robot AI; 2022; 9():943261. PubMed ID: 36237843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems.
    Gualtieri L; Fraboni F; De Marchi M; Rauch E
    Appl Ergon; 2022 Oct; 104():103807. PubMed ID: 35763990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration.
    Pupa A; Van Dijk W; Brekelmans C; Secchi C
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable Admittance Control Based on Human-Robot Collaboration Observer Using Frequency Analysis for Sensitive and Safe Interaction.
    Kim H; Yang W
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PREDICTOR: A Physical emulatoR enabling safEty anD ergonomICs evaluation and Training of physical human-rObot collaboRation.
    Sunesson CE; Schøn DT; Hassø CNP; Chinello F; Fang C
    Front Neurorobot; 2023; 17():1080038. PubMed ID: 36860936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Real-Time Human-Robot Collaborative System Based on 1 kHz Visual Feedback Control and Its Application to a Peg-in-Hole Task.
    Yamakawa Y; Matsui Y; Ishikawa M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33478053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth leader or sharp follower? Playing the mirror game with a robot.
    Kashi S; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot.
    Škulj G; Vrabič R; Podržaj P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends of Human-Robot Collaboration in Industry Contexts: Handover, Learning, and Metrics.
    Castro A; Silva F; Santos V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Factors Considerations and Metrics in Shared Space Human-Robot Collaboration: A Systematic Review.
    Hopko S; Wang J; Mehta R
    Front Robot AI; 2022; 9():799522. PubMed ID: 35187093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Human Comfort Factors, Measurements, and Improvements in Human-Robot Collaboration.
    Yan Y; Jia Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Human-Following Motion Planning and Control Scheme for Collaborative Robots Based on Human Motion Prediction.
    Khawaja FI; Kanazawa A; Kinugawa J; Kosuge K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
    Lasota PA; Shah JA
    Hum Factors; 2015 Feb; 57(1):21-33. PubMed ID: 25790568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital Twin-Driven Human Robot Collaboration Using a Digital Human.
    Maruyama T; Ueshiba T; Tada M; Toda H; Endo Y; Domae Y; Nakabo Y; Mori T; Suita K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General Framework for the Optimization of the Human-Robot Collaboration Decision-Making Process Through the Ability to Change Performance Metrics.
    Hani Daniel Zakaria M; Lengagne S; Corrales Ramón JA; Mezouar Y
    Front Robot AI; 2021; 8():736644. PubMed ID: 34760932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.