These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37425355)

  • 21. Tandem Acidic CO
    Pu Y; Wang Y; Wu G; Wu X; Lu Y; Yu Y; Chu N; He X; Li D; Zeng RJ; Jiang Y
    Environ Sci Technol; 2024 Apr; 58(17):7445-7456. PubMed ID: 38622030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria.
    Wirth S; Dürre P
    Metab Eng; 2021 Jul; 66():296-307. PubMed ID: 33894339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii.
    Chowdhury NP; Litty D; Müller V
    Int Microbiol; 2022 Aug; 25(3):551-560. PubMed ID: 35179672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defining Genomic and Predicted Metabolic Features of the
    Ross DE; Marshall CW; Gulliver D; May HD; Norman RS
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32934112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas.
    Diender M; Stams AJ; Sousa DZ
    Biotechnol Biofuels; 2016; 9():82. PubMed ID: 27042211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactate formation from fructose or C1 compounds in the acetogen Acetobacterium woodii by metabolic engineering.
    Moon J; Waschinger LM; Müller V
    Appl Microbiol Biotechnol; 2023 Sep; 107(17):5491-5502. PubMed ID: 37417977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii.
    Beck MH; Flaiz M; Bengelsdorf FR; Dürre P
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):687-699. PubMed ID: 31807888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways.
    Moreira JPC; Heap JT; Alves JI; Domingues L
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):24. PubMed ID: 36788587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri.
    Fernández-Blanco C; Veiga MC; Kennes C
    J Environ Manage; 2022 Jan; 302(Pt A):113992. PubMed ID: 34710762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Draft Genome Sequence of Acid-Tolerant Clostridium drakei SL1T, a Potential Chemical Producer through Syngas Fermentation.
    Jeong Y; Song Y; Shin HS; Cho BK
    Genome Announc; 2014 May; 2(3):. PubMed ID: 24831144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A clean in-frame knockout system for gene deletion in Acetobacterium woodii.
    Baker JP; Sáez-Sáez J; Jensen SI; Nielsen AT; Minton NP
    J Biotechnol; 2022 Jul; 353():9-18. PubMed ID: 35659892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui.
    Schwarz FM; Ciurus S; Jain S; Baum C; Wiechmann A; Basen M; Müller V
    Microb Biotechnol; 2020 Nov; 13(6):2044-2056. PubMed ID: 32959527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. General medium for the autotrophic cultivation of acetogens.
    Groher A; Weuster-Botz D
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1645-50. PubMed ID: 27270418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioconversion of pure CO
    Wang Z; Chen J; Veiga MC; Kennes C
    Bioresour Technol; 2024 Dec; 413():131480. PubMed ID: 39265751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unveiling the bioelectrocatalyzing behaviors and microbial ecological mechanisms behind caproate production without exogenous electron donor.
    Yu D; Cheng S; Cao F; Varrone C; He Z; Liu W; Yue X; Zhou A
    Environ Res; 2022 Dec; 215(Pt 3):114077. PubMed ID: 35981610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition.
    Gazzola G; Maria Braguglia C; Crognale S; Gallipoli A; Mininni G; Piemonte V; Rossetti S; Tonanzi B; Gianico A
    Waste Manag; 2022 Aug; 150():328-338. PubMed ID: 35907330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation.
    Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G
    Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-Scale Analysis of Acetobacterium woodii Identifies Translational Regulation of Acetogenesis.
    Shin J; Song Y; Kang S; Jin S; Lee JK; Kim DR; Cho S; Müller V; Cho BK
    mSystems; 2021 Aug; 6(4):e0069621. PubMed ID: 34313456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Oxygen Contamination on Propionate and Caproate Formation in Anaerobic Fermentation.
    Baleeiro FCF; Ardila MS; Kleinsteuber S; Sträuber H
    Front Bioeng Biotechnol; 2021; 9():725443. PubMed ID: 34568301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homologous production, one-step purification, and proof of Na
    Wiechmann A; Trifunović D; Klein S; Müller V
    Biotechnol Biofuels; 2020 Dec; 13(1):208. PubMed ID: 33342435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.