BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37425703)

  • 21. hsp70-DnaJ chaperone pairs prevent nitric oxide-mediated apoptosis in RAW 264.7 macrophages.
    Gotoh T; Terada K; Mori M
    Cell Death Differ; 2001 Apr; 8(4):357-66. PubMed ID: 11550087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human DNAJ in cancer and stem cells.
    Sterrenberg JN; Blatch GL; Edkins AL
    Cancer Lett; 2011 Dec; 312(2):129-42. PubMed ID: 21925790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. p90 ribosomal S6 kinase 1 (RSK1) and the catalytic subunit of protein kinase A (PKA) compete for binding the pseudosubstrate region of PKAR1alpha: role in the regulation of PKA and RSK1 activities.
    Gao X; Chaturvedi D; Patel TB
    J Biol Chem; 2010 Mar; 285(10):6970-9. PubMed ID: 20048145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural analyses of the PKA RIIβ holoenzyme containing the oncogenic DnaJB1-PKAc fusion protein reveal protomer asymmetry and fusion-induced allosteric perturbations in fibrolamellar hepatocellular carcinoma.
    Lu TW; Aoto PC; Weng JH; Nielsen C; Cash JN; Hall J; Zhang P; Simon SM; Cianfrocco MA; Taylor SS
    PLoS Biol; 2020 Dec; 18(12):e3001018. PubMed ID: 33370777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of BAG2 protein during proteasome inhibitor-induced apoptosis in thyroid carcinoma cells.
    Wang HQ; Zhang HY; Hao FJ; Meng X; Guan Y; Du ZX
    Br J Pharmacol; 2008 Nov; 155(5):655-60. PubMed ID: 18660828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes.
    Chien V; Aitken JF; Zhang S; Buchanan CM; Hickey A; Brittain T; Cooper GJ; Loomes KM
    Biochem J; 2010 Nov; 432(1):113-21. PubMed ID: 20735358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BAG2 drives chemoresistance of breast cancer by exacerbating mutant p53 aggregate.
    Huang X; Shi D; Zou X; Wu X; Huang S; Kong L; Yang M; Xiao Y; Chen B; Chen X; Ouyang Y; Song L; Jian Y; Lin C
    Theranostics; 2023; 13(1):339-354. PubMed ID: 36593950
    [No Abstract]   [Full Text] [Related]  

  • 29. A tripartite cooperative mechanism confers resistance of the protein kinase A catalytic subunit to dephosphorylation.
    Chan TO; Armen RS; Yadav S; Shah S; Zhang J; Tiegs BC; Keny N; Blumhof B; Deshpande DA; Rodeck U; Penn RB
    J Biol Chem; 2020 Mar; 295(10):3316-3329. PubMed ID: 31964716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.
    Haushalter KJ; Casteel DE; Raffeiner A; Stefan E; Patel HH; Taylor SS
    J Biol Chem; 2018 Mar; 293(12):4411-4421. PubMed ID: 29378851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate.
    Ueda K; Kosako H; Fukui Y; Hattori S
    J Biol Chem; 2004 Oct; 279(40):41815-21. PubMed ID: 15271996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PKAc-directed interaction and phosphorylation of Ptc is required for Hh signaling inhibition in
    Fan J; Gao Y; Lu Y; Wu W; Yuan S; Wu H; Chen D; Zhao Y
    Cell Discov; 2019; 5():44. PubMed ID: 31636957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian cytosolic DnaJ homologues affect the hsp70 chaperone-substrate reaction cycle, but do not interact directly with nascent or newly synthesized proteins.
    Nagata H; Hansen WJ; Freeman B; Welch WJ
    Biochemistry; 1998 May; 37(19):6924-38. PubMed ID: 9578579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ.
    Goffin L; Georgopoulos C
    Mol Microbiol; 1998 Oct; 30(2):329-40. PubMed ID: 9791178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.
    Petitjean C; Moreira D; López-García P; Brochier-Armanet C
    BMC Evol Biol; 2012 Nov; 12():226. PubMed ID: 23181628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent effects of ATP on the binding of the DnaK and DnaJ chaperones to each other, or to their various native and denatured protein substrates.
    Wawrzynów A; Zylicz M
    J Biol Chem; 1995 Aug; 270(33):19300-6. PubMed ID: 7642605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BAG2 Overexpression Correlates with Growth and Poor Prognosis of Esophageal Squamous Cell Carcinoma.
    Hong YC; Wang Z; Peng B; Xia LG; Lin LW; Xu ZL
    Open Life Sci; 2018 Jan; 13():582-588. PubMed ID: 33817129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress.
    Kim JS; Liu L; Vázquez-Torres A
    mBio; 2021 May; 12(3):. PubMed ID: 33975942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones.
    Laufen T; Mayer MP; Beisel C; Klostermeier D; Mogk A; Reinstein J; Bukau B
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5452-7. PubMed ID: 10318904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potentiation of the activity of Escherichia coli chaperone DnaJ by tailing hyper-acidic minipeptides.
    Liu Y; Zhang M; Yuan H; Zou Z
    J Biotechnol; 2021 Nov; 341():86-95. PubMed ID: 34563565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.