These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Wu Y; Brooks CL J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754 [TBL] [Abstract][Full Text] [Related]
6. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN; Abagyan RA J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility. Masters MR; Mahmoud AH; Wei Y; Lill MA J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514 [TBL] [Abstract][Full Text] [Related]
9. BP-Dock: a flexible docking scheme for exploring protein-ligand interactions based on unbound structures. Bolia A; Gerek ZN; Ozkan SB J Chem Inf Model; 2014 Mar; 54(3):913-25. PubMed ID: 24380381 [TBL] [Abstract][Full Text] [Related]
10. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features. Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119 [TBL] [Abstract][Full Text] [Related]
11. Flexible protein docking refinement using pose-dependent normal mode analysis. Venkatraman V; Ritchie DW Proteins; 2012 Aug; 80(9):2262-74. PubMed ID: 22610423 [TBL] [Abstract][Full Text] [Related]
12. Limits and potential of combined folding and docking. Pozzati G; Zhu W; Bassot C; Lamb J; Kundrotas P; Elofsson A Bioinformatics; 2022 Jan; 38(4):954-961. PubMed ID: 34788800 [TBL] [Abstract][Full Text] [Related]
13. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. Chaudhury S; Gray JJ J Mol Biol; 2008 Sep; 381(4):1068-87. PubMed ID: 18640688 [TBL] [Abstract][Full Text] [Related]
14. Equivariant Scalar Fields for Molecular Docking with Fast Fourier Transforms. Jing B; Jaakkola T; Berger B ArXiv; 2024 Sep; ():. PubMed ID: 38106455 [TBL] [Abstract][Full Text] [Related]
15. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. Su C; Nguyen TD; Zheng J; Kwoh CK BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S9. PubMed ID: 25521441 [TBL] [Abstract][Full Text] [Related]
17. Challenges and Advantages of Accounting for Backbone Flexibility in Prediction of Protein-Protein Complexes. Faruk NF; Peng X; Freed KF; Roux B; Sosnick TR J Chem Theory Comput; 2022 Mar; 18(3):2016-2032. PubMed ID: 35213808 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges. Huang SY Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282 [TBL] [Abstract][Full Text] [Related]
19. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Huang SY; Zou X Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427 [TBL] [Abstract][Full Text] [Related]
20. A non-redundant protein-RNA docking benchmark version 2.0. Nithin C; Mukherjee S; Bahadur RP Proteins; 2017 Feb; 85(2):256-267. PubMed ID: 27862282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]