These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37425754)

  • 1. Flexible Protein-Protein Docking with a Multi-Track Iterative Transformer.
    Chu LS; Ruffolo JA; Harmalkar A; Gray JJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37425754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible protein-protein docking with a multitrack iterative transformer.
    Chu LS; Ruffolo JA; Harmalkar A; Gray JJ
    Protein Sci; 2024 Feb; 33(2):e4862. PubMed ID: 38148272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing membrane-associated protein docking with improved sampling and scoring in Rosetta.
    Samanta R; Harmalkar A; Prathima P; Gray JJ
    bioRxiv; 2024 Jul; ():. PubMed ID: 39026849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable protein-protein docking with AlphaFold, Rosetta, and replica-exchange.
    Harmalkar A; Lyskov S; Gray JJ
    bioRxiv; 2023 Nov; ():. PubMed ID: 37546760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy.
    Wu Y; Brooks CL
    J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
    Masters MR; Mahmoud AH; Wei Y; Lill MA
    J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient flexible backbone protein-protein docking for challenging targets.
    Marze NA; Roy Burman SS; Sheffler W; Gray JJ
    Bioinformatics; 2018 Oct; 34(20):3461-3469. PubMed ID: 29718115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BP-Dock: a flexible docking scheme for exploring protein-ligand interactions based on unbound structures.
    Bolia A; Gerek ZN; Ozkan SB
    J Chem Inf Model; 2014 Mar; 54(3):913-25. PubMed ID: 24380381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible protein docking refinement using pose-dependent normal mode analysis.
    Venkatraman V; Ritchie DW
    Proteins; 2012 Aug; 80(9):2262-74. PubMed ID: 22610423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits and potential of combined folding and docking.
    Pozzati G; Zhu W; Bassot C; Lamb J; Kundrotas P; Elofsson A
    Bioinformatics; 2022 Jan; 38(4):954-961. PubMed ID: 34788800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles.
    Chaudhury S; Gray JJ
    J Mol Biol; 2008 Sep; 381(4):1068-87. PubMed ID: 18640688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivariant Scalar Fields for Molecular Docking with Fast Fourier Transforms.
    Jing B; Jaakkola T; Berger B
    ArXiv; 2024 Sep; ():. PubMed ID: 38106455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.
    Su C; Nguyen TD; Zheng J; Kwoh CK
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S9. PubMed ID: 25521441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and Advantages of Accounting for Backbone Flexibility in Prediction of Protein-Protein Complexes.
    Faruk NF; Peng X; Freed KF; Roux B; Sosnick TR
    J Chem Theory Comput; 2022 Mar; 18(3):2016-2032. PubMed ID: 35213808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-redundant protein-RNA docking benchmark version 2.0.
    Nithin C; Mukherjee S; Bahadur RP
    Proteins; 2017 Feb; 85(2):256-267. PubMed ID: 27862282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.