These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37425797)

  • 1. Cooperative control of a DNA origami force sensor.
    Robbins A; Hildebolt H; Neuhoff M; Beshay P; Winter JO; Castro CE; Bundschuh R; Poirier MG
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative control of a DNA origami force sensor.
    Robbins A; Hildebolt H; Neuhoff M; Beshay P; Winter JO; Castro CE; Bundschuh R; Poirier MG
    Sci Rep; 2024 Feb; 14(1):4132. PubMed ID: 38374280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Force Application by a Nanoscale DNA Force Spectrometer.
    Darcy M; Crocker K; Wang Y; Le JV; Mohammadiroozbahani G; Abdelhamid MAS; Craggs TD; Castro CE; Bundschuh R; Poirier MG
    ACS Nano; 2022 Apr; 16(4):5682-5695. PubMed ID: 35385658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments.
    Janissen R; Berghuis BA; Dulin D; Wink M; van Laar T; Dekker NH
    Nucleic Acids Res; 2014 Oct; 42(18):e137. PubMed ID: 25140010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Origami-Based Single-Molecule Force Spectroscopy and Applications.
    Kramm K; Schröder T; Vera AM; Grabenhorst L; Tinnefeld P; Grohmann D
    Methods Mol Biol; 2024; 2694():479-507. PubMed ID: 37824019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules.
    Wang Y; Le JV; Crocker K; Darcy MA; Halley PD; Zhao D; Andrioff N; Croy C; Poirier MG; Bundschuh R; Castro CE
    Nucleic Acids Res; 2021 Sep; 49(15):8987-8999. PubMed ID: 34358322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative modeling of forces in electromagnetic tweezers.
    Bijamov A; Shubitidze F; Oliver PM; Vezenov DV
    J Appl Phys; 2010 Nov; 108(10):104701. PubMed ID: 21258580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces.
    Dutta PK; Zhang Y; Blanchard AT; Ge C; Rushdi M; Weiss K; Zhu C; Ke Y; Salaita K
    Nano Lett; 2018 Aug; 18(8):4803-4811. PubMed ID: 29911385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Programmable DNA Origami Nanospring That Reports Dynamics of Single Integrin Motion, Force Magnitude and Force Orientation in Living Cells.
    Matsubara H; Fukunaga H; Saito T; Ikezaki K; Iwaki M
    ACS Nano; 2023 Jul; 17(14):13185-13194. PubMed ID: 37394270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-Induced Unravelling of DNA Origami.
    Engel MC; Smith DM; Jobst MA; Sajfutdinow M; Liedl T; Romano F; Rovigatti L; Louis AA; Doye JPK
    ACS Nano; 2018 Jul; 12(7):6734-6747. PubMed ID: 29851456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric Communication between Dynamic Components on DNA Nanodevices.
    Wang Y; Sensale S; Pedrozo M; Huang CM; Poirier MG; Arya G; Castro CE
    ACS Nano; 2023 May; 17(9):8271-8280. PubMed ID: 37072126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers.
    Karna D; Pan W; Pandey S; Suzuki Y; Mao H
    Nanoscale; 2021 May; 13(18):8425-8430. PubMed ID: 33908965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp.
    Nickels PC; Wünsch B; Holzmeister P; Bae W; Kneer LM; Grohmann D; Tinnefeld P; Liedl T
    Science; 2016 Oct; 354(6310):305-307. PubMed ID: 27846560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.
    Ma Z; Huang Y; Park S; Kawai K; Kim DN; Hirai Y; Tsuchiya T; Yamada H; Tabata O
    Small; 2018 Jan; 14(1):. PubMed ID: 29131541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Tension Probes for Imaging Forces at the Cell Surface.
    Liu Y; Galior K; Ma VP; Salaita K
    Acc Chem Res; 2017 Dec; 50(12):2915-2924. PubMed ID: 29160067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force Spectroscopy in Studying Infection.
    Zhou Z; Leake MC
    Adv Exp Med Biol; 2016; 915():307-27. PubMed ID: 27193551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.