BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 37425997)

  • 1. Polymeric carbohydrates utilization separates microbiomes into niches: insights into the diversity of microbial carbohydrate-active enzymes in the inner shelf of the Pearl River Estuary, China.
    Sun CC; Zhao WJ; Yue WZ; Cheng H; Sun FL; Wang YT; Wu ML; Engel A; Wang YS
    Front Microbiol; 2023; 14():1180321. PubMed ID: 37425997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic analysis of carbohydrate-active enzymes and their contribution to marine sediment biodiversity.
    López-Sánchez R; Rebollar EA; Gutiérrez-Ríos RM; Garciarrubio A; Juarez K; Segovia L
    World J Microbiol Biotechnol; 2024 Feb; 40(3):95. PubMed ID: 38349445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.
    Andrade AC; Fróes A; Lopes FÁC; Thompson FL; Krüger RH; Dinsdale E; Bruce T
    Microb Ecol; 2017 Jul; 74(1):89-105. PubMed ID: 28070679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf.
    Vuillemin A; Coskun ÖK; Orsi WD
    Appl Environ Microbiol; 2022 May; 88(9):e0021622. PubMed ID: 35404072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential and expression of carbohydrate utilization by marine fungi in the global ocean.
    Baltar F; Zhao Z; Herndl GJ
    Microbiome; 2021 May; 9(1):106. PubMed ID: 33975640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptations of
    Koch H; Freese HM; Hahnke RL; Simon M; Wietz M
    Front Microbiol; 2019; 10():504. PubMed ID: 30936857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean.
    Crump BC; Armbrust EV; Baross JA
    Appl Environ Microbiol; 1999 Jul; 65(7):3192-204. PubMed ID: 10388721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial carbohydrate-active enzymes influence soil carbon by regulating the of plant- and fungal-derived biomass decomposition in plateau peat wetlands under differing water conditions.
    Xiong M; Jiang W; Zou S; Kang D; Yan X
    Front Microbiol; 2023; 14():1266016. PubMed ID: 37731925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling microbe-mediated degradation of lignin and lignin-derived aromatic fragments in the Pearl River Estuary sediments.
    Li JL; Duan L; Wu Y; Ahmad M; Yin LZ; Luo XQ; Wang X; Fang BZ; Li SH; Huang LN; Wu JX; Mou XZ; Wang P; Li WJ
    Chemosphere; 2022 Jun; 296():133995. PubMed ID: 35176304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global contribution of pelagic fungi to protein degradation in the ocean.
    Breyer E; Zhao Z; Herndl GJ; Baltar F
    Microbiome; 2022 Sep; 10(1):143. PubMed ID: 36050758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomics Reveals the Diversity and Taxonomy of Carbohydrate-Active Enzymes and Antibiotic Resistance Genes in Suancai Bacterial Communities.
    Song Q; Wang B; Han Y; Zhou Z
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomic insights into the characteristics of soil microbial communities in the decomposing biomass of Moso bamboo forests under different management practices.
    Zhang X; Huang Z; Zhong Z; Li Q; Bian F; Yang C
    Front Microbiol; 2022; 13():1051721. PubMed ID: 36590390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Distribution of Carbohydrate Utilization Potential in the Prokaryotic Tree of Life.
    López-Mondéjar R; Tláskal V; da Rocha UN; Baldrian P
    mSystems; 2022 Dec; 7(6):e0082922. PubMed ID: 36413015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and sequence-based metagenomics to uncover carbohydrate-degrading enzymes from composting samples.
    Santos-Pereira C; Sousa J; Costa ÂMA; Santos AO; Rito T; Soares P; Franco-Duarte R; Silvério SC; Rodrigues LR
    Appl Microbiol Biotechnol; 2023 Sep; 107(17):5379-5401. PubMed ID: 37417976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment.
    Wang Y; Zhang R; He Z; Van Nostrand JD; Zheng Q; Zhou J; Jiao N
    Front Microbiol; 2017; 8():1153. PubMed ID: 28680420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The communities and functional profiles of virioplankton along a salinity gradient in a subtropical estuary.
    Zhang C; Du XP; Zeng YH; Zhu JM; Zhang SJ; Cai ZH; Zhou J
    Sci Total Environ; 2021 Mar; 759():143499. PubMed ID: 33203567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic mining of Indian river confluence reveal functional microbial community with lignocelluloytic potential.
    Rajput V; Samson R; Yadav R; Dastager S; Khairnar K; Dharne M
    3 Biotech; 2022 Jun; 12(6):132. PubMed ID: 35611093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic Insights Into a Cellulose-Rich Niche Reveal Microbial Cooperation in Cellulose Degradation.
    Cui J; Mai G; Wang Z; Liu Q; Zhou Y; Ma Y; Liu C
    Front Microbiol; 2019; 10():618. PubMed ID: 30984144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAZymes in
    Wolter LA; Mitulla M; Kalem J; Daniel R; Simon M; Wietz M
    Front Microbiol; 2021; 12():628055. PubMed ID: 33912144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China.
    Mai YZ; Lai ZN; Li XH; Peng SY; Wang C
    Mar Pollut Bull; 2018 Nov; 136():309-321. PubMed ID: 30509812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.