BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3742601)

  • 1. The membrane phenotype of in vivo induced tumor selective cytolytic lymphocytes of the rat: a distinction from NK cells.
    Hedlund G; Sjögren HO
    Cell Immunol; 1986 Jun; 100(1):232-8. PubMed ID: 3742601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective induction of OX19+ (CD5+) or OX19- (CD5-) alloreactive cytolytic lymphocytes in the rat.
    Hedlund G; Brodin T; Sjögren HO
    Cell Immunol; 1987 Apr; 105(2):366-73. PubMed ID: 3494529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotype of rat natural killer cells defined by monoclonal antibodies marking rat lymphocyte subsets.
    Cantrell DA; Robins RA; Brooks CG; Baldwin RW
    Immunology; 1982 Jan; 45(1):97-103. PubMed ID: 7056570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells.
    Vujanovic NL; Herberman RB; Olszowy MW; Cramer DV; Salup RR; Reynolds CW; Hiserodt JC
    Cancer Res; 1988 Feb; 48(4):884-90. PubMed ID: 3257412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of membrane markers on rat cytotoxic cells.
    Cantrell DA; Robins RA; Baldwin RW
    Immunology; 1983 May; 49(1):139-46. PubMed ID: 6220963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allogeneic lymphocyte cytotoxicity (ALC) in rats: establishment of an in vitro assay, and direct evidence that cells with natural killer (NK) activity are involved in ALC.
    Rolstad B; Fossum S
    Immunology; 1987 Feb; 60(2):151-7. PubMed ID: 2434415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous diabetes mellitus in the Bio-Breeding/Worcester rat. Evidence in vitro for natural killer cell lysis of islet cells.
    MacKay P; Jacobson J; Rabinovitch A
    J Clin Invest; 1986 Mar; 77(3):916-24. PubMed ID: 3512604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of T cell differentiation antigens and Ia on rat cytotoxic T lymphocytes.
    Duarte AJ; Carpenter CB; Strom TB
    J Immunol; 1982 Feb; 128(2):580-4. PubMed ID: 6976382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal antibody analysis of Listeria monocytogenes-induced cytotoxic lymphocytes.
    Chen-Woan M; McGregor DD; Harris WV; Greiner DL
    Immunology; 1986 Apr; 57(4):505-13. PubMed ID: 3082747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphokine-activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells.
    Vujanovic NL; Herberman RB; Maghazachi AA; Hiserodt JC
    J Exp Med; 1988 Jan; 167(1):15-29. PubMed ID: 3257251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane phenotype of the rat cytotoxic T lymphocyte.
    Gilman SC; Rosenberg JS; Feldman JD
    J Immunol; 1982 Sep; 129(3):1012-6. PubMed ID: 6980913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens.
    Lanier LL; Le AM; Phillips JH; Warner NL; Babcock GF
    J Immunol; 1983 Oct; 131(4):1789-96. PubMed ID: 6225799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and isolation of rat natural killer (NK) cells from T cells with monoclonal antibodies.
    Woda BA; McFadden ML; Welsh RM; Bain KM
    J Immunol; 1984 May; 132(5):2183-4. PubMed ID: 6609190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of diabetes in BioBreeding/Worcester rats with monoclonal antibodies that recognize T lymphocytes or natural killer cells.
    Like AA; Biron CA; Weringer EJ; Byman K; Sroczynski E; Guberski DL
    J Exp Med; 1986 Oct; 164(4):1145-59. PubMed ID: 3531381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphokine-activated killer cells in rats. IV. Developmental relationships among large agranular lymphocytes, large granular lymphocytes, and lymphokine-activated killer cells.
    Maghazachi AA; Vujanovic NL; Herberman RB; Hiserodt JC
    J Immunol; 1988 Apr; 140(8):2846-52. PubMed ID: 3258622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human large granular lymphocyte subpopulations: comparison of the phenotype of NK cells and of interleukin 2-dependent progenitors of cytolytic effector cells.
    Allavena P; Klein R; Ortaldo JR
    Nat Immun Cell Growth Regul; 1985; 4(1):7-20. PubMed ID: 3875792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of human natural killer cell subpopulations differentially responsive to interferon potentiation.
    Edwards BS; Fuhlbrigge RC; Borden EC
    J Interferon Res; 1986 Aug; 6(4):361-72. PubMed ID: 3772177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferon-beta and recombinant IL 2 can both enhance, but by different pathways, the nonspecific cytolytic potential of T3- natural killer cell-derived clones rather than that of T3+ clones.
    van de Griend RJ; Ronteltap CP; Gravekamp C; Monnikendam D; Bolhuis RL
    J Immunol; 1986 Mar; 136(5):1700-7. PubMed ID: 3005399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloned "anomalous" killer cells derived from allogeneic mixed leukocyte culture.
    Benson EM; Giorgi JV; Dvorak AM; Galli SJ; Russell PS
    Cell Immunol; 1987 Jun; 107(1):201-18. PubMed ID: 2438052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural cytotoxicity of mouse, rat, and human lymphocytes against heterologous target cells.
    Nunn ME; Herberman RB
    J Natl Cancer Inst; 1979 Apr; 62(4):765-71. PubMed ID: 285291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.