These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37426992)

  • 21. Viscoelastic Effects on Drop Deformation Using a Machine Learning-Enhanced, Finite Element Method.
    Prieto JL
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids.
    Nenadic IZ; Urban MW; Mitchell SA; Greenleaf JF
    Phys Med Biol; 2011 Apr; 56(7):2245-64. PubMed ID: 21403186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A modified formulation of quasi-linear viscoelasticity for transversely isotropic materials under finite deformation.
    Balbi V; Shearer T; Parnell WJ
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180231. PubMed ID: 30333704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity.
    Allen JS; Roy RA
    J Acoust Soc Am; 2000 Oct; 108(4):1640-50. PubMed ID: 11051492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated model discovery for human brain using Constitutive Artificial Neural Networks.
    Linka K; St Pierre SR; Kuhl E
    Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media.
    Sahimi M
    Phys Rev E; 2024 Apr; 109(4-1):041001. PubMed ID: 38755895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues From Digital Image Correlation Measurements.
    You H; Zhang Q; Ross CJ; Lee CH; Hsu MC; Yu Y
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36218246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling the Local Relation Between Tissue Composition and Human Brain Mechanics Through Machine Learning.
    Linka K; Reiter N; Würges J; Schicht M; Bräuer L; Cyron CJ; Paulsen F; Budday S
    Front Bioeng Biotechnol; 2021; 9():704738. PubMed ID: 34485258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning data-driven discretizations for partial differential equations.
    Bar-Sinai Y; Hoyer S; Hickey J; Brenner MP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15344-15349. PubMed ID: 31311866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physics-informed learning of governing equations from scarce data.
    Chen Z; Liu Y; Sun H
    Nat Commun; 2021 Oct; 12(1):6136. PubMed ID: 34675223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelasticity using reactive constrained solid mixtures.
    Ateshian GA
    J Biomech; 2015 Apr; 48(6):941-7. PubMed ID: 25757663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forward and inverse problems for creep models in viscoelasticity.
    Itou H; Kovtunenko VA; Nakamura G
    Philos Trans A Math Phys Eng Sci; 2024 Aug; 382(2277):20230295. PubMed ID: 39005012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix.
    Babaei B; Velasquez-Mao AJ; Pryse KM; McConnaughey WB; Elson EL; Genin GM
    J Mech Behav Biomed Mater; 2018 Aug; 84():198-207. PubMed ID: 29793157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of viscoelasticity on residual strain in aortic soft tissues.
    Zhang W; Sommer G; Niestrawska JA; Holzapfel GA; Nordsletten D
    Acta Biomater; 2022 Mar; 140():398-411. PubMed ID: 34823042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear viscoelastic properties of human dentin under uniaxial tension.
    Emamian A; Aghajani F; Safshekan F; Tafazzoli-Shadpour M
    Dent Mater; 2021 Feb; 37(2):e59-e68. PubMed ID: 33279222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood clot behaves as a poro-visco-elastic material.
    Ghezelbash F; Liu S; Shirazi-Adl A; Li J
    J Mech Behav Biomed Mater; 2022 Apr; 128():105101. PubMed ID: 35124354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.