BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 37427419)

  • 1. Cellular Exposure to Chloroacetanilide Herbicides Induces Distinct Protein Destabilization Profiles.
    Quanrud GM; Lyu Z; Balamurugan SV; Canizal C; Wu HT; Genereux JC
    ACS Chem Biol; 2023 Jul; 18(7):1661-1676. PubMed ID: 37427419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hsp40 Affinity to Identify Proteins Destabilized by Cellular Toxicant Exposure.
    Quanrud GM; Montoya MR; Mei L; Awad MR; Genereux JC
    Anal Chem; 2021 Dec; 93(50):16940-16946. PubMed ID: 34874156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting protein recovery during Hsp40 affinity profiling.
    Montoya MR; Quanrud GM; Mei L; Moñtano JL; Hong C; Genereux JC
    Anal Bioanal Chem; 2024 Jun; ():. PubMed ID: 38850318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural influences in relative sorptivity of chloroacetanilide herbicides on soil.
    Liu W; Gan J; Papiernik SK; Yates SR
    J Agric Food Chem; 2000 Sep; 48(9):4320-5. PubMed ID: 10995358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of chloroacetanilide herbicides on soil (I). Structural influence of chloroacetanilide herbicide for their adsorption on soils and its components.
    Liu WP; Liu HJ; Zheng W; Lu JH
    J Environ Sci (China); 2001 Jan; 13(1):37-45. PubMed ID: 11590717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation analyses for bimolecular nucleophilic substitution reactions of chloroacetanilide herbicides and their structural analogs with environmentally relevant nucleophiles.
    Lippa KA; Roberts AL
    Environ Toxicol Chem; 2005 Oct; 24(10):2401-9. PubMed ID: 16268142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction.
    Junghans M; Backhaus T; Faust M; Scholze M; Grimme LH
    Pest Manag Sci; 2003 Oct; 59(10):1101-10. PubMed ID: 14561067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes.
    Kale VM; Miranda SR; Wilbanks MS; Meyer SA
    J Biochem Mol Toxicol; 2008 Feb; 22(1):41-50. PubMed ID: 18273908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione-dependent cytotoxicity of the chloroacetanilide herbicides alachlor, metolachlor, and propachlor in rat and human hepatoma-derived cultured cells.
    Dierickx PJ
    Cell Biol Toxicol; 1999; 15(5):325-32. PubMed ID: 10813365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanism of propachlor reductive transformation through nucleophilic substitution by dithionite.
    Liu CS; Shih K; Wei L; Wang F; Li FB
    Chemosphere; 2011 Nov; 85(9):1438-43. PubMed ID: 21893332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins.
    Oosterhuis B; Vukman K; Vági E; Glavinas H; Jablonkai I; Krajcsi P
    Toxicology; 2008 Jun; 248(1):45-51. PubMed ID: 18433974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dechlorinating chloroacetanilide herbicides by dithionite-treated aquifer sediment and surface soil.
    Boparai HK; Shea PJ; Comfort SD; Snow DD
    Environ Sci Technol; 2006 May; 40(9):3043-9. PubMed ID: 16719109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophilic aliphatic substitution reactions of propachlor, alachlor, and metolachlor with bisulfide (HS-) and polysulfides (Sn2-).
    Loch AR; Lippa KA; Carlson DL; Chin YP; Traina SJ; Roberts AL
    Environ Sci Technol; 2002 Oct; 36(19):4065-73. PubMed ID: 12380076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor.
    Stamper DM; Tuovinen OH
    Crit Rev Microbiol; 1998; 24(1):1-22. PubMed ID: 9561822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV and temperature effects on chloroacetanilide and triazine herbicides degradation and cytotoxicity.
    Gideon J; Mulligan J; Hui C; Cheng SY
    Heliyon; 2021 Sep; 7(9):e08010. PubMed ID: 34589629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of the nucleophilic displacement reactions of chloroacetanilide herbicides: investigation of alpha-substituent effects.
    Lippa KA; Demel S; Lau IH; Roberts AL
    J Agric Food Chem; 2004 May; 52(10):3010-21. PubMed ID: 15137847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans.
    Bar-Lavan Y; Shemesh N; Dror S; Ofir R; Yeger-Lotem E; Ben-Zvi A
    PLoS Genet; 2016 Dec; 12(12):e1006531. PubMed ID: 28036392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of herbicide propachlor by an agrochemical thiourea.
    Zheng W; Yates SR; Papiernik SK; Guo M
    Environ Sci Technol; 2004 Dec; 38(24):6855-60. PubMed ID: 15669349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Nucleophile's Nature on Chloroacetanilide Herbicides Cleavage Reaction Mechanism. A DFT Study.
    Cuesta SA; Torres FJ; Rincón L; Paz JL; Márquez EA; Mora JR
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.