These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37427584)

  • 1. Hydraulic-electric analogy for design and operation of microfluidic systems.
    Li Z; Liu C; Sun J
    Lab Chip; 2023 Jul; 23(15):3311-3327. PubMed ID: 37427584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-Driven Two-Input 3D Microfluidic Logic Gates.
    El-Atab N; Canas JC; Hussain MM
    Adv Sci (Weinh); 2020 Jan; 7(2):1903027. PubMed ID: 31993297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-based processors and circuits design.
    Azizbeigi K; Zamani Pedram M; Sanati-Nezhad A
    Sci Rep; 2021 May; 11(1):10985. PubMed ID: 34040102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic oscillators with widely tunable periods.
    Kim SJ; Yokokawa R; Takayama S
    Lab Chip; 2013 Apr; 13(8):1644-8. PubMed ID: 23429765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers.
    Kim SJ; Lai D; Park JY; Yokokawa R; Takayama S
    Small; 2012 Oct; 8(19):2925-34. PubMed ID: 22761019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing threshold pressure limitations in microfluidic transistors for self-regulated microfluidic circuits.
    Kim SJ; Yokokawa R; Takayama S
    Appl Phys Lett; 2012 Dec; 101(23):234107. PubMed ID: 23284181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistage Digital-to-Analogue Chip Based on a Weighted Flow Resistance Network for Soft Actuators.
    Zhou Z; Xu M; Zhu C; He G; Zhang K; Sun D
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic transistor for automatic control of liquids.
    Gopinathan KA; Mishra A; Mutlu BR; Edd JF; Toner M
    Nature; 2023 Oct; 622(7984):735-741. PubMed ID: 37880436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.
    Devaraju NS; Unger MA
    Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable hydraulic resistor for microfluidic chips using electrogate arrays.
    Salva ML; Temiz Y; Rocca M; Arango YC; Niemeyer CM; Delamarche E
    Sci Rep; 2019 Nov; 9(1):17242. PubMed ID: 31754240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.
    Wang G; Teng D; Lai YT; Lu YW; Ho Y; Lee CY
    IET Nanobiotechnol; 2014 Sep; 8(3):163-71. PubMed ID: 25082225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidic Transistor for Liquid Signal Processing.
    Gopinathan KA; Mishra A; Mutlu BR; Edd JF; Toner M
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous microfluidic actuators for periodic sequential flow generation.
    Li Z; Kim SJ
    Sci Adv; 2019 Apr; 5(4):eaat3080. PubMed ID: 31016234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circuit-Based Design of Microfluidic Drop Networks.
    Rousset N; Lohasz C; Boos JA; Misun PM; Cardes F; Hierlemann A
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and operation of microelectrochemical gates and integrated circuits.
    Chang BY; Crooks JA; Chow KF; Mavré F; Crooks RM
    J Am Chem Soc; 2010 Nov; 132(43):15404-9. PubMed ID: 20942419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the behavior of microfluidic circuits made from discrete elements.
    Bhargava KC; Thompson B; Iqbal D; Malmstadt N
    Sci Rep; 2015 Oct; 5():15609. PubMed ID: 26516059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review.
    Karle M; Vashist SK; Zengerle R; von Stetten F
    Anal Chim Acta; 2016 Jul; 929():1-22. PubMed ID: 27251944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.