These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37427957)

  • 1. Respiratory Fluid Mechanics of the Effect of Mouth Breathing on High-Arched Palate: Computational Fluid Dynamics Analyses.
    Xie W; Zhang L; Shao J; Zhang C; Zhang Z; Zhang L
    J Craniofac Surg; 2023 Nov-Dec 01; 34(8):2302-2307. PubMed ID: 37427957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper airway in children with unilateral cleft lip and palate evaluated with computational fluid dynamics.
    Iwasaki T; Suga H; Minami-Yanagisawa A; Hashiguchi-Sato M; Sato H; Yamamoto Y; Shirazawa Y; Tsujii T; Kanomi R; Yamasaki Y
    Am J Orthod Dentofacial Orthop; 2019 Aug; 156(2):257-265. PubMed ID: 31375236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oronasal distribution of respiratory airflow.
    Niinimaa V; Cole P; Mintz S; Shephard RJ
    Respir Physiol; 1981 Jan; 43(1):69-75. PubMed ID: 7244427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cleft lip and palate on the nasal airway in children.
    Warren DW; Hairfield WM; Dalston ET; Sidman JD; Pillsbury HC
    Arch Otolaryngol Head Neck Surg; 1988 Sep; 114(9):987-92. PubMed ID: 3408580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy.
    Schmidt N; Behrbohm H; Goubergrits L; Hildebrandt T; Brüning J
    Int J Comput Assist Radiol Surg; 2022 Sep; 17(9):1519-1529. PubMed ID: 35821562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nasal and oral breathing on airway collapsibility in patients with obstructive sleep apnea: Computational fluid dynamics analyses.
    Suzuki M; Tanuma T
    PLoS One; 2020; 15(4):e0231262. PubMed ID: 32282859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hard palate dimensions in nasal and mouth breathers from different etiologies.
    Berwig LC; Silva AM; Côrrea EC; Moraes AB; Montenegro MM; Ritzel RA
    J Soc Bras Fonoaudiol; 2011 Dec; 23(4):308-14. PubMed ID: 22231050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft palate and oronasal breathing in humans.
    Rodenstein DO; Stănescu DC
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):651-7. PubMed ID: 6490454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between nasal airway size and nasal-oral breathing in cleft lip and palate.
    Warren DW; Hairfield WM; Dalston ET
    Cleft Palate J; 1990 Jan; 27(1):46-51; discussion 51-2. PubMed ID: 2302815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nasal sequels of unilateral clefts: analysis and management].
    Talmant JC; Talmant JC; Lumineau JP
    Rev Stomatol Chir Maxillofac; 2007 Sep; 108(4):275-88. PubMed ID: 17688895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory mode, nasal patency and palatine dimensions.
    Trevisan ME; Bellinaso JH; Pacheco Ade B; Augé LB; Silva AM; Corrêa EC
    Codas; 2015; 27(2):201-6. PubMed ID: 26107087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The switching point from nasal to oronasal breathing.
    Niinimaa V; Cole P; Mintz S; Shephard RJ
    Respir Physiol; 1980 Oct; 42(1):61-71. PubMed ID: 7444224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tongue pressure measurement in children with mouth-breathing behaviour.
    Azevedo ND; Lima JC; Furlan RMMM; Motta AR
    J Oral Rehabil; 2018 Aug; 45(8):612-617. PubMed ID: 29782038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic analysis of trapezius and sternocleidomastoideus muscles during nasal and oral inspiration in nasal- and mouth-breathing children.
    Ribeiro EC; Marchiori SC; Silva AM
    J Electromyogr Kinesiol; 2002 Aug; 12(4):305-16. PubMed ID: 12121687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pharyngeal airway respiration pressure on Class II mandibular retrusion in children: A computational fluid dynamics study of inspiration and expiration.
    Iwasaki T; Sato H; Suga H; Takemoto Y; Inada E; Saitoh I; Kakuno K; Kanomi R; Yamasaki Y
    Orthod Craniofac Res; 2017 May; 20(2):95-101. PubMed ID: 28414873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of adenotonsillectomy on hard palate dimensions.
    Vieira BB; Sanguino AC; Mattar SE; Itikawa CE; Anselmo-Lima WT; Valera FC; Matsumoto MA
    Int J Pediatr Otorhinolaryngol; 2012 Aug; 76(8):1140-4. PubMed ID: 22621956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of the nose in inspiration in mouth breathing: quantitative determination by analysis of expiratory gases].
    Chowanetz W; Schott J
    HNO; 1986 May; 34(5):216-20. PubMed ID: 3721927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased net water loss by oral compared to nasal expiration in healthy subjects.
    Svensson S; Olin AC; Hellgren J
    Rhinology; 2006 Mar; 44(1):74-7. PubMed ID: 16550955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open oral cavity has little effects on upper airway aerodynamics in children with obstructive sleep apnea syndrome: A computational fluid dynamics study based on patient-specific models.
    Chen S; Wang J; Liu D; Lei L; Wu W; Liu Z; Lee C
    J Biomech; 2021 May; 121():110383. PubMed ID: 33848827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Establishment and digital simulation of upper airway in patients with adenoid hypertrophy].
    Wang HW; Qi SQ; Liu CB; Ji CJ; Li S
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Apr; 58(4):337-344. PubMed ID: 37005780
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.