BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37428125)

  • 1. Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity.
    Tian Z; Kale VS; Shi Z; Yin J; Kandambeth S; Wang Y; Emwas AH; Lei Y; Guo X; Ming J; Wang W; Alsadun N; Shekhah O; Eddaoudi M; Alshareef HN
    ACS Nano; 2023 Jul; 17(14):13961-13973. PubMed ID: 37428125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries.
    Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C
    Small; 2022 Jun; 18(22):e2201449. PubMed ID: 35557499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage.
    Yan X; Wang F; Su X; Ren J; Qi M; Bao P; Chen W; Peng C; Chen L
    Adv Mater; 2023 Nov; 35(44):e2305037. PubMed ID: 37728857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries.
    Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage.
    Wang M; Wang G; Naisa C; Fu Y; Gali SM; Paasch S; Wang M; Wittkaemper H; Papp C; Brunner E; Zhou S; Beljonne D; Steinrück HP; Dong R; Feng X
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202310937. PubMed ID: 37691002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Water-in-Sugar" Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage.
    Su Z; Chen J; Ren W; Guo H; Jia C; Yin S; Ho J; Zhao C
    Small; 2021 Oct; 17(40):e2102375. PubMed ID: 34499420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Charge Storage Dynamics in Donor-Acceptor Covalent Organic Frameworks Based Supercapacitors by Employing Ionic Liquid Electrolyte.
    Chatterjee A; Sun J; Rawat KS; Van Speybroeck V; Van Der Voort P
    Small; 2023 Nov; 19(46):e2303189. PubMed ID: 37471172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc-Ion Batteries.
    Wang W; Kale VS; Cao Z; Lei Y; Kandambeth S; Zou G; Zhu Y; Abouhamad E; Shekhah O; Cavallo L; Eddaoudi M; Alshareef HN
    Adv Mater; 2021 Oct; 33(39):e2103617. PubMed ID: 34365688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of Sulfonic Acid Groups Anchored in Covalent Organic Frameworks as an Intrinsic Proton-Conducting Electrolyte.
    Zhai L; Yao Y; Ma B; Hasan MM; Han Y; Mi L; Nagao Y; Li Z
    Macromol Rapid Commun; 2022 Jan; 43(1):e2100590. PubMed ID: 34612557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Crowding Electrolytes for Stable Proton Batteries.
    Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C
    Small; 2022 Nov; 18(45):e2202992. PubMed ID: 36156409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the Origin of the Electrochemical Capacity in a Proton-Based Battery H
    Lemaire P; Sel O; Alves Dalla Corte D; Iadecola A; Perrot H; Tarascon JM
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4510-4519. PubMed ID: 31850732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity.
    Zhu M; Zhao L; Ran Q; Zhang Y; Peng R; Lu G; Jia X; Chao D; Wang C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103896. PubMed ID: 34914857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An All-Climate Nonaqueous Hydrogen Gas-Proton Battery.
    Zhang K; Liu Z; Khan NA; Ma Y; Xie Z; Xu J; Jiang T; Liu H; Zhu Z; Liu S; Wang W; Meng Y; Peng Q; Zheng X; Wang M; Chen W
    Nano Lett; 2024 Feb; 24(5):1729-1737. PubMed ID: 38289279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent organic frameworks and their composites for rechargeable batteries.
    Xu Y; Gong J; Li Q; Guo X; Wan X; Xu L; Pang H
    Nanoscale; 2024 Jun; 16(24):11429-11456. PubMed ID: 38855977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolytes in Organic Batteries.
    Li M; Hicks RP; Chen Z; Luo C; Guo J; Wang C; Xu Y
    Chem Rev; 2023 Feb; ():. PubMed ID: 36735935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries.
    Dantas R; Ribeiro C; Souto M
    Chem Commun (Camb); 2023 Dec; 60(2):138-149. PubMed ID: 38051115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating Protons to Tailor the Enol Conversion of Quinone for High-Performance Aqueous Zinc Batteries.
    Cui H; Zhu J; Zhang R; Yang S; Li C; Wang Y; Hou Y; Li Q; Liang G; Zhi C
    J Am Chem Soc; 2024 Jun; 146(22):15393-15402. PubMed ID: 38767283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous Azatruxene Covalent Organic Frameworks for Anion Insertion in Battery Cells.
    Pallasch SM; Bhosale M; Smales GJ; Schmidt C; Riedel S; Zhao-Karger Z; Esser B; Dumele O
    J Am Chem Soc; 2024 Jun; 146(25):17318-17324. PubMed ID: 38869185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.