These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37428132)
1. Ordered Membrane Electrode Assembly with Drastically Enhanced Proton and Mass Transport for Proton Exchange Membrane Water Electrolysis. Tian B; Li Y; Liu Y; Ning F; Dan X; Wen Q; He L; He C; Shen M; Zhou X Nano Lett; 2023 Jul; 23(14):6474-6481. PubMed ID: 37428132 [TBL] [Abstract][Full Text] [Related]
2. Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis. Dong S; Zhang C; Yue Z; Zhang F; Zhao H; Cheng Q; Wang G; Xu J; Chen C; Zou Z; Dou Z; Yang H Nano Lett; 2022 Dec; 22(23):9434-9440. PubMed ID: 36469749 [TBL] [Abstract][Full Text] [Related]
3. Low-Loading and Highly Stable Membrane Electrode Based on an Ir@WO Jiang G; Yu H; Li Y; Yao D; Chi J; Sun S; Shao Z ACS Appl Mater Interfaces; 2021 Apr; 13(13):15073-15082. PubMed ID: 33761742 [TBL] [Abstract][Full Text] [Related]
4. Nanosized Proton Conductor Array with High Specific Surface Area Improves Fuel Cell Performance at Low Pt Loading. Ning F; Qin J; Dan X; Pan S; Bai C; Shen M; Li Y; Fu X; Zhou S; Shen Y; Feng W; Zou Y; Cui Y; Song Y; Zhou X ACS Nano; 2023 May; 17(10):9487-9500. PubMed ID: 37129062 [TBL] [Abstract][Full Text] [Related]
5. Double-Layer ePTFE-Reinforced Membrane Electrode Assemblies Prepared by a Reverse Membrane Deposition Process for High-Performance and Durable Proton Exchange Membrane Fuel Cells. Liu L; Fu Z; Xing Y; Li Y; Zhou X; Li Z; Li H ACS Appl Mater Interfaces; 2023 Jun; 15(25):30281-30293. PubMed ID: 37331008 [TBL] [Abstract][Full Text] [Related]
6. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells. Bodard A; Chen Z; ELJarray O; Zhang G Small Methods; 2024 Sep; ():e2400574. PubMed ID: 39285832 [TBL] [Abstract][Full Text] [Related]
7. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells. Ding L; Wang W; Xie Z; Li K; Yu S; Capuano CB; Keane A; Ayers K; Zhang FY ACS Appl Mater Interfaces; 2023 May; 15(20):24284-24295. PubMed ID: 37167124 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Performance Study of the Anodic Catalyst Layer via Doctor Blade Coating for PEM Water Electrolysis. Liu G; Peng S; Hou F; Wang X; Fang B Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676831 [TBL] [Abstract][Full Text] [Related]
9. Highly active and stable OER electrocatalysts derived from Sr Retuerto M; Pascual L; Torrero J; Salam MA; Tolosana-Moranchel Á; Gianolio D; Ferrer P; Kayser P; Wilke V; Stiber S; Celorrio V; Mokthar M; Sanchez DG; Gago AS; Friedrich KA; Peña MA; Alonso JA; Rojas S Nat Commun; 2022 Dec; 13(1):7935. PubMed ID: 36566246 [TBL] [Abstract][Full Text] [Related]
10. Constructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers. Liu C; Wippermann K; Rasinski M; Suo Y; Shviro M; Carmo M; Lehnert W ACS Appl Mater Interfaces; 2021 Apr; 13(14):16182-16196. PubMed ID: 33798332 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Pavel CC; Cecconi F; Emiliani C; Santiccioli S; Scaffidi A; Catanorchi S; Comotti M Angew Chem Int Ed Engl; 2014 Jan; 53(5):1378-81. PubMed ID: 24339230 [TBL] [Abstract][Full Text] [Related]
12. Designing a Schottky Barrier-Free Interface for a Highly Conductive Anode in Proton Exchange Membrane Water Electrolysis. Doo G; Bae H; Park J; Hyun J; Kim I; Lee DW; Oh E; Kim HT ACS Nano; 2024 Aug; 18(34):23331-23340. PubMed ID: 39151059 [TBL] [Abstract][Full Text] [Related]
13. Highly stable nanostructured membrane electrode assembly based on Pt/Nb Zeng Y; Guo X; Wang Z; Geng J; Zhang H; Song W; Yu H; Shao Z; Yi B Nanoscale; 2017 May; 9(20):6910-6919. PubMed ID: 28509928 [TBL] [Abstract][Full Text] [Related]
15. An IrRuO Liu Y; Zhang M; Zhang C; Zhang H; Wang H Nanoscale; 2024 May; 16(19):9382-9391. PubMed ID: 38682643 [TBL] [Abstract][Full Text] [Related]
16. IrO Yan T; Chen S; Sun W; Liu Y; Pan L; Shi C; Zhang X; Huang ZF; Zou JJ ACS Appl Mater Interfaces; 2023 Feb; 15(5):6912-6922. PubMed ID: 36718123 [TBL] [Abstract][Full Text] [Related]
17. Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers. Taie Z; Peng X; Kulkarni D; Zenyuk IV; Weber AZ; Hagen C; Danilovic N ACS Appl Mater Interfaces; 2020 Nov; 12(47):52701-52712. PubMed ID: 33183003 [TBL] [Abstract][Full Text] [Related]
18. Dynamics Management of Intermediate Water Storage in an Air-Breathing Single-Cell Membrane Electrode Assembly. Kumar A; Schechter A; Avrahami I Membranes (Basel); 2023 Dec; 14(1):. PubMed ID: 38248694 [TBL] [Abstract][Full Text] [Related]
19. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation. Kardi SN; Ibrahim N; Rashid NAA; Darzi GN Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820 [TBL] [Abstract][Full Text] [Related]
20. Composite Anode for PEM Water Electrolyzers: Lowering Iridium Loadings and Reducing Material Costs with a Conductive Additive. Ferner KJ; Litster S ACS Appl Energy Mater; 2024 Sep; 7(18):8124-8135. PubMed ID: 39328828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]