These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 37428661)
1. A Compact Constraint Incremental Method for Random Weight Networks and Its Application. Wang Q; Dai W; Zhang C; Zhu J; Ma X IEEE Trans Neural Netw Learn Syst; 2024 Nov; 35(11):16936-16944. PubMed ID: 37428661 [TBL] [Abstract][Full Text] [Related]
2. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. Zhang R; Lan Y; Huang GB; Xu ZB IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):365-71. PubMed ID: 24808516 [TBL] [Abstract][Full Text] [Related]
3. Improving I-ELM structure through optimal addition of hidden nodes: Compact I-ELM. Seo S; Jo J; Hamza M; Kim Y Sci Rep; 2024 Oct; 14(1):22782. PubMed ID: 39354114 [TBL] [Abstract][Full Text] [Related]
4. Stochastic configuration networks with fast implementations. Tian Z; Zhang H Rev Sci Instrum; 2021 Dec; 92(12):125109. PubMed ID: 34972390 [TBL] [Abstract][Full Text] [Related]
5. Extreme Learning Machine for Multilayer Perceptron. Tang J; Deng C; Huang GB IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):809-21. PubMed ID: 25966483 [TBL] [Abstract][Full Text] [Related]
6. Universal approximation using incremental constructive feedforward networks with random hidden nodes. Huang GB; Chen L; Siew CK IEEE Trans Neural Netw; 2006 Jul; 17(4):879-892. PubMed ID: 16856652 [TBL] [Abstract][Full Text] [Related]
7. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
8. Stochastic Configuration Networks: Fundamentals and Algorithms. Wang D; Li M IEEE Trans Cybern; 2017 Oct; 47(10):3466-3479. PubMed ID: 28841561 [TBL] [Abstract][Full Text] [Related]
9. A new Jacobian matrix for optimal learning of single-layer neural networks. Peng JX; Li K; Irwin GW IEEE Trans Neural Netw; 2008 Jan; 19(1):119-29. PubMed ID: 18269943 [TBL] [Abstract][Full Text] [Related]
10. Learning Optimized Structure of Neural Networks by Hidden Node Pruning With L Xie X; Zhang H; Wang J; Chang Q; Wang J; Pal NR IEEE Trans Cybern; 2020 Mar; 50(3):1333-1346. PubMed ID: 31765323 [TBL] [Abstract][Full Text] [Related]
11. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy. Ling QH; Song YQ; Han F; Yang D; Huang DS PLoS One; 2016; 11(11):e0165803. PubMed ID: 27835638 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional stochastic configuration network for regression problems. Cao W; Xie Z; Li J; Xu Z; Ming Z; Wang X Neural Netw; 2021 Aug; 140():237-246. PubMed ID: 33794415 [TBL] [Abstract][Full Text] [Related]
13. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Feng G; Huang GB; Lin Q; Gay R IEEE Trans Neural Netw; 2009 Aug; 20(8):1352-7. PubMed ID: 19596632 [TBL] [Abstract][Full Text] [Related]
14. Design of double fuzzy clustering-driven context neural networks. Kim EH; Oh SK; Pedrycz W Neural Netw; 2018 Aug; 104():1-14. PubMed ID: 29689457 [TBL] [Abstract][Full Text] [Related]
15. A nonlinear industrial soft sensor modeling method based on locality preserving stochastic configuration network with utilizing unlabeled samples. Zhao Y; Deng X; Li S ISA Trans; 2023 Aug; 139():548-560. PubMed ID: 37117050 [TBL] [Abstract][Full Text] [Related]
16. Generalized single-hidden layer feedforward networks for regression problems. Wang N; Er MJ; Han M IEEE Trans Neural Netw Learn Syst; 2015 Jun; 26(6):1161-76. PubMed ID: 25051564 [TBL] [Abstract][Full Text] [Related]
17. A Fast Feedforward Small-World Neural Network for Nonlinear System Modeling. Li W; Li Z; Qiao J IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38758621 [TBL] [Abstract][Full Text] [Related]
18. Low-Discrepancy Points for Deterministic Assignment of Hidden Weights in Extreme Learning Machines. Cervellera C; Macciò D IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):891-6. PubMed ID: 25966484 [TBL] [Abstract][Full Text] [Related]
19. A new discrete-continuous algorithm for radial basis function networks construction. Zhang L; Li K; He H; Irwin GW IEEE Trans Neural Netw Learn Syst; 2013 Nov; 24(11):1785-98. PubMed ID: 24808612 [TBL] [Abstract][Full Text] [Related]
20. Weight Noise Injection-Based MLPs With Group Lasso Penalty: Asymptotic Convergence and Application to Node Pruning. Wang J; Chang Q; Chang Q; Liu Y; Pal NR IEEE Trans Cybern; 2019 Dec; 49(12):4346-4364. PubMed ID: 30530381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]